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ABSTRACT 

The research presented in this dissertation employs methods of quantum chemistry for 

the search of highly energetic chemical compounds that can have applications as possible 

energy sources. The areas of research include: 1) improvement of orbital optimization methods 

for different types of wavefimctions which leads to substantial savings of computer time and 

memory; 2) predicting new high energy isomers for singlet and triplet states of N3F and their 

kinetic stability with respect to isomerisation and dissociation reactions; 3) estimation of 

minimum energy reaction paths for dissociation reactions of high energy isomers of N2O2 

including potential energy barriers and minimum energy crossing points between the closest 

singlet and triplet states; 4) investigation of thermodynamic and kinetic stability of Van der 

Waals complexes M-H2 (M = Li, Be, B, C, Na, Mg, Al, Si) that can play an important role in 

improvement of energetic properties of hydrogen based rocket fuels; 4) mapping of the 

potential energy surface for AIH2 compound in the region of crossing between ^B2 and ^Ai 

electronic states and predicting the kinetic stability of Al complex, which suggests that Al may 

be among the promising candidates for inclusion into solid hydrogen for the purpose of energy 

storage. 
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CHAPTER 1. GENERAL INTRODUCTION 

The role of computational quantum chemistry in the prediction of structure and 

properties of chemical compounds has become very important in recent years. The main 

principle that makes quantum mechanics usefijl in chemistry is that many important physical 

and chemical properties of molecules are defined by the properties of the nuclei and electrons 

that constitute molecules. The basic interactions between nuclei and electrons can be described 

by the laws of quantum mechanics. However, solving the Schrodinger equation even for an 

average size molecular system involves hundreds of variables and is a very challenging task. 

Recent progress in computer hardware, as well as development of new efficient methods and 

algorithms, has brought quantum-chemical methods into new areas of chemistry. However, 

computational chemistry is still a state-of-the-art field and caimot be approached only by blind 

use of numerical algorithms and computational software. Chemical knowledge and inmition are 

essential, and a proper balance is necessary in using quantum chemical methods and prior 

chemical knowledge, so that, on one hand, one can distinguish unphysical results of a 

numerical method, but on the other hand, one does not bias the results of calculations to 

support incorrect prior knowledge. 

In this work, methods of quantum chemistry are applied to the search for new chemical 

compounds that are highly energetic and can possibly be used as fuels in the future. Theory can 

play an important role in predicting such compounds and their stability. In order for a chemical 

compound to be a possible candidate for highly energetic material, it must have high energy 

metastable isomers that can transform to lower energy products via some chemical process that 

can be either isomerisation to other stable isomers of this compound or dissociation, 

combustion or other chemical reaction. Another important requirement is kinetic stability which 

makes it possible to synthesize and store such metastable compounds. These issues can be 

assessed by theoretical studies of potential energy surfaces of possible candidate compounds 
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and calculating potential barriers that separate metastable structures from lower lying products. 

There are, of course, other requirements for successM synthesis of highly energetic chemical 

compounds, as well as environmental considerations for their use as sources of energy. 

Therefore, the two conditions mentioned above are only first steps in prediction of possible 

high energy compounds. If theoretical calculations show that a compound is highly energetic 

and kinetically stable, it does not necessarily mean it can be useful in practice, and additional 

experimental work must be performed. But if theoretical study predicts that a compound is not 

stable, it is likely that it carmot be synthesized and used for energy storage purposes. 

Therefore, the main purpose of theoretical works is to eliminate those suggested chemical 

compounds that do not satisfy the above conditions, and recommend other compounds as 

likely candidates for which experimental work may be attempted to synthesize them. Theory 

can also suggest possible synthetic routes to such promising compounds. 

Reliable prediction of kinetic stability of high energy species requires estimation of 

reaction paths and potential energy barriers for reactions that often involve bond breaking and 

formation. The proper description of such reactions requires very accurate multi-

configurational wavefimctions. Calculations of such wavefunctions can take substantial 

amounts of computer time. That is why development of time-saving computational algorithms 

is very important. Efficient techniques has been developed recendy that include the quasi-

Newton method for the optimization of closed shell SCF wavefunctions' and the furst order 

method for optimization of multi-configurational SCF (MCSCF) wavefunctions^. These 

methods are combined in this work (chapter 2) to achieve faster convergence of the MCSCF 

procedure. The resulting method saves both computer time and memory required for 

optimizations of multi-configurational wavefunctions. This is especially important when a large 

number of points on potential energy surfaces is needed, and large basis set expansions are 

required to obtain accurate wavefunctions along reaction paths. 
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MCSCF wavefunctions are also required for computation of nonadiabatic interactions 

between intersecting electronic states. The evaluation of such interactions becomes very 

important when the stability of high energy species is considered. It is very likely that low-

lying excited electronic states are close in energy to the regions of ground electronic states that 

contain metastable high energy minima. Therefore, surface crossings are possible and may 

decrease or destroy the stability of high energy isomers. This means that besides evaluation of 

potential barriers on the adiabatic surfaces, one also must determine minimum energy crossing 

points between different electronic states^ and estimate nonadiabatic interactions between these 

states. This work also includes implementation of MCSCF techniques that can help the 

evaluation of nonadiabatic interactions. 

Dissertation Organization 

This dissertation includes both theory development (Chapter 2) and applications related 

to the search for highly energetic materials (Chapters 3-6). Chapter 2 discusses the 

approximate second order method which is applied to the optimization of molecular orbitals of 

different wavefimctions and is implemented in the GAMESS electronic structure program'^, hi 

Chapter 3, new high energy isomers for the N3F molecule are studied, including their structure 

and stability with respect to isomerisation and dissociation reactions. Dynamic reaction path 

(DRP) calculations that describe dynamics of the dissociation of the N3F singlet cyclic isomer 

are presented in the Appendix. Chapter 4 considers potential energy surfaces for dissociation 

reactions of high energy isomers of (NO) dimer, which can be possible candidates for high 

energy density materials. An investigation of thermodynamic and kinetic stabilities of Van der 

Waals complexes M-H2 (M = Li, Be, B, C, Na, Mg, Al, Si) is presented in Chapter 5. 

Inclusion of small amounts of light metal atoms in solid hydrogen may improve energetic 

properties of hydrogen based rocket fuels if these atoms form only weakly bound complexes 

and do not react with H2 to form stable hydrides. The Al complex is predicted to be kinetically 
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stable and, therefore, a good candidate for energy storage. The AI-H2 potential energy surface 

is further investigated in Chapter 6. 

Chapters 2 - 6 are papers either published or submitted to refereed journals. These 

chapters are preceded by the theoretical background section given below in this chapter. 

Finally, general conclusions are given in Chapter 7. 

Theoretical background 

In this section, a brief review of basic concepts and selected methods of quantum 

chemistry is given as a background to the following chapters. Some of these methods are used 

in the discussion of the new theoretical developments that improve existing SCF and MCSCF 

methods (chapter 2). The rest of the methods described here are used as tools for smdies of 

high energy compounds (chapters 3-6). 

Adiabatic (Born-Oppenheimer) approximation 

The Hamiltonian for a molecule with iV nuclei and n electrons includes terms that 

correspond to the kinetic energy of the nuclei, the kinetic energy of the electrons, the potential 

energy due to the electrostatic repulsions between the nuclei, the potential energy due to the 

attractions between the electrons and the nuclei, and the potential energy due to the repulsions 

between the electrons: 

N 1 t,- " 7 7 p- N n 'y J. n n ^2 

2 R^p ^ j Rj^ j j^j (1.1) 

~ ^nucl ^el Kucl-nuct •*" ^mcl-el + ̂ el-el 

where indices a and belong to nuclei and i and j refer to electrons, R^p is the distance 

between a th and p th nuclei, is the distance between the ith electron and the aah nucleus, 

is the distance between the zth and yth electron. 
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The Hamiltonian (1.1) depends both on electron (r) and nuclear coordinates (R); 

therefore the molecular wavefunction also depends on r and R which makes solving the 

Schrodinger equation for such a function very complicated. 

A key simplification to the solution of the molecular Schrodinger equation is the Bom-

Oppenheimer approximation. It is based on the fact that nuclei are much heavier than electrons 

(the mass of the lightest nucleus (proton) is 1836 times greater than the mass of an electron). 

Accordingly, the electrons move much faster than the nuclei. Therefore, as a first 

approximation, the electron motion can be separated from the nuclear motion^: 

= (1-2) 

where depends on nuclear coordinates R as parameters. 

Substitution of (1.2) into the time-independent Schrodinger equation gives: 

^el ^nucl—nucl ^nucl^et 

Terms that are included in the kinetic energy part (first two terms of (1.3)) and involve 

differentiation, can be expressed as 

* a ^el ̂ nucl a ^ nucl ^ a^er a ^nucl ^ ^ nucl * a ̂ el 

V^U/ \I/ _ U/ \72U/ 
* i ^el ^nucl ^ nucl ^ i ^ el 

Then equation (1.3) becomes 
fe2 jv 1 r 1 ft- ^ \ 

__vi/ Y - fe-V V V ^ +—V y V"4^ 
o Ayf ^ a~nucl " ^ a~el annuel 'j Hyf ~nucl a 'el 

(1.4a) 

(1.4b) 

a=l 
(1.5) 

^^nucl-nucl ^nucl~el K / - =  £^el% nucl 
2m, 

In the standard Bom-Oppenheimer approximation, the terms included in square brackets (that 

is, the first and second derivatives of with respect to nuclear coordinates) are neglected. 

We can define electronic and nuclear Hamiltonians as: 

H.,=-
2m nucl-nucl ^nucl—el ^el-el 

•e t=l 
2 N 

H =-—Y— 
nucl o Zrf w a 2^^M„ 

(1.6) 

(1.7) 
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and define Y,, as an eigenfimction of 

(1.8) 

Then, substituting (1.8) into (1.5), ignoring the derivative terms in square brackets and 

dividing (1.5) by gives the nuclear Schrodinger equation for : 

In order for the above separation to work, the electronic wavefiinction T,, must change very 

slowly as a function of nuclear coordinates R, so that its first and second derivatives with 

respect to R can be neglected. 

The adiabatic approximation is essential for quantum chemistry. It is extremely usefiil 

for the majority of applications, especially those that deal with ground electronic states of 

molecules in the regions close to equilibrium. The error introduced by the Bom-Oppenheimer 

approximation for such systems is negligible compared with the total energy of the system. 

However, this approximation breaks down for degenerate or quasi-degenerate electronic states, 

e.g., Jahn-Teller effect Nonadiabatic effects become very important in the regions of 

intersections of electronic states, and must be taken into account when studying such processes 

as photodissociation, electronic quenching, and charge-transfer reactions^. As was mentioned 

earlier, consideration of nonadiabatic interactions is very important for predicting the stability 

of high energy species. One of the theoretical approaches that can be used to account for 

nonadiabatic effects is discussed later in this chapter. 

Potential energy surfaces 

In the framework of the Bom-Oppenheimer approximation, most problems in quantum 

chemistry are reduced to solving the electronic Schrodinger equation (1.8). There have been 

developed a number of methods that allow one to find approximate solutions of this equation. 

Some of the methods that have been used for the projects discussed in this dissertation, will be 

briefly described in the next section. In a typical quantum chemistry calculation, equation (1.8) 

is solved for a given set of fixed nuclear coordinates R^ and the energy is obtained that 

(^nucl ^el^^nucl ~ ^^nucl (1.9) 
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consists of electronic energy terms plus the nuclear-nuclear repulsion energy. This procedure is 

then repeated for other sets of nuclear coordinates R. The resulting function E(R) is called a 

potential energy surface (PES). Because of the large number of nuclear coordinates for 

polyatomic molecules, E(R) is typically a multidimensional surface in the space of 3N-6 

dimensions. As a result, an enormous amount of calculations is needed to obtain such a surface 

for a molecule with more than 3 atoms. In practice, however, the knowledge of the entire PES 

is not necessary for understanding of chemical reactions in which a given molecular system is 

involved. It is often sufficient to obtain only key parts of the PES that give important 

information about the way the reactants transform into products. 

The most common calculation in the practice of quantum chemistry is locating 

stationary points on potential energy surfaces, that is points for which the gradient of the 

energy with respect to nuclear coordinates is zero. These points include minima (equilibrium 

structures), where the hessian (matrix of second derivatives of the energy with respect to 

nuclear coordinates) has aU positive eigenvalues, and transition states, where the hessian has 

one (and only one) negative eigenvalue. Transition states are maximum points on minimum 

energy paths that connect two minima corresponding to reactants and products. The energy 

difference between the transition state and the reactants (products) is called the barrier height 

for the forward (reverse) reaction. A reaction path is a path that connects reactants and products 

via the transition state. The intrinsic reaction coordinate (IRC)^ is often used as a model for the 

reaction path. The IRC is defined as the steepest descent path (or minimum energy path) ft^om 

the transition state to each of the minima obtained in mass weighted Cartesian coordinates 

n^a'ya-' th® mass of nucleus a). 

In many cases, knowledge of the locations of the minima, transition states, and IRC 

gives enough information to understand mechanisms of chemical reactions. The actual path of 

reacting molecules that possess kinetic energy is, of course, different from the minimum 

energy path. One way to study reaction dynamics of molecules with translational or vibrational 
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kinetic energy is the dynamic reaction path (DRP) method^, in which the negative of the 

potential energy gradient is used to obtain atomic accelerations, and then numerical integration 

methods are used to obtain velocities and positions of nuclei. This method is also called the 

classical "trajectory on-the-fly" method and may be started at any convenient point on a PES. 

Approximate solutions of the electronic Schrodinger equation 

Exact solutions of equation (1.8) can be found only in very limited cases (for example, 

one-electron systems like the hydrogen molecule ion H,). For the majority of molecular 

systems of interest, however, it is impossible to solve (1.8) exactly, because the electron-
n n ^ ^2 

electron repulsion term of the electronic Hamiltonian (1.6), SI —, does not allow 
j >>J ''ij 

separation of variables. Therefore, the greatest challenge of quantum chemistry is to develop 

approximate methods that allow one to obtain wavefimctions and molecular properties that are 

accurate enough for chemical applications. 

One of the most commonly used approximate wavefimctions is the Hartree-Fock 

wavejunction. The idea of the Hartree-Fock approximation is to replace the exact electron-

electron repulsion term by the sum of the repulsion potentials between each electron and the 

average field of all other electrons. This allows one to reduce the n-electron Schrodinger 

equation (1.8) to the system of n one-electron equations, called Hartree-Fock equations: 

F]\(r,. = e.y/. (/= 1,2,..., n) (1.10) 

where F/ is the one-electron Fock operator; y/i is the one-electron waveftmction (orbital); £/ is 

the one-electron (orbital) energy. 

The total wavefunction of a molecule that has n electrons in n/2 doubly occupied 

orbitals y/i can be represented as a Slater determinant: 

V/-,(l)a v^,(2)a ... v/-,(n/2)a 

yr,i2)P . . .  V^,(n/2)^ 

y/„a)P Wn(2)P ... Wn(n/2)p  

<D = 
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Molecular orbitals y/i are usually expanded as linear combinations of atomic orbitals x^i 

(MO-LCAO approximation): 

where F is the Fock matrix, S is the overlap matrix between basis functions, C is the matrix of 

expansion coefficients, e is the diagonal matrix of orbital energies. Since F depends on C, 

these equations are non-linear and are solved iteratively by means of a self consistent field 

(SCF) procedure. A second order method for solving the Hartree-Fock equations, involving 

Newton-Raphson optimization of orbital coefficients, will be discussed in chapter 2. 

The Hartree-Fock method, though a reasonable approximation in many cases, often is 

not able to properly describe energetic properties of molecules, such as, for example, 

dissociation energies. Since the tme electron-electron repulsion potential is replaced by an 

average potential, the Hartree-Fock method does not account for the correlation of electron 

motions at any given instant of time, and therefore, underestimates energies of chemical bonds. 

The electron correlation error is usually defined as the difference between the exact 

(nonrelativistic) energy and the Hartree-Fock energy. However, this definition makes sense 

only when the Hartree-Fock description is qualitatively correct, that is when the single 

determinant (1.11) dominates the molecular wavefunction. This is not always the case. 

The single-determinant Hartree-Fock model usually works for equilibrium structures, 

but it breaks down in simations where several electronic configurations are close in energy. 

This is usually the case for reaction paths that involve bond breaking and formation, such as, 

for example, dissociation reactions and symmetry-forbidden reactions. 

The simplest example of the breakdown of the Hartree-Fock method is the dissociation 

of the H2 molecule. It works reasonably well around the H2 equilibrium geometry (-0.74 A), 

(1.12) 

which leads to Hartree-Fock-Roothaan equations ̂ 0; 

FC = SC£ (1.13) 
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with electron correlation improving the total energy only slightly, but results in very high 

energies at large separations (about 160 kcal/mol higher than the correct dissociation products). 

The explanation of this is that the Hartree-Fock model includes terms with both electrons 

located at the same H atom. These terms correspond to the dissociation to H"'" + H", which is 

much higher in energy than H + H". Therefore, the Hartree-Fock method is not the appropriate 

model when one needs to describe dissociation reactions that result in products with unpaired 

electrons. The improved wavefimction for H2 that gives qualitatively correct description of the 

dissociation process can be constructed as the linear combination of two configvurations: 

'i'McscF= Ci (\iri)2 + C2 (\|/2)2 

where \|ri and \^2 are the bonding and antibonding molecular orbitals: 

\|/i = isA+Isb; V2=1SA-1SB; 

Isa and Isb are the atomic orbitals that belong to atoms A and B, respectively. 

This wavefimction describes the entire potential energy surface correctly, with Ci ~ 1, C2 ~ 0 

in the regions close to equilibrium, and Ci ~ - C2 at large separations. The wavefiinction above 

is the simplest example of a multiconfigurational self consistent field (MCSCF)^^ 

wavefimction, which in the general case can be written as a superposition of several electronic 

configurations : 

^MCSCF ~ ^ 
K 

where coefficients Afr  are called configuration interaction (CI) coefficients. In general, each <I>if 

may be a linear combination of Slater determinants to assure the appropriate spin and 

symmetry. MCSCF wavefunctions are obtained by optimization of both CI coefficients (A) 

and orbital expansion coefficients (C). CI and orbital coefficients can be optimized either 

separately by a two-step procedure or simultaneously. Different methods of optimization of 

MCSCF orbital coefficients in a two-step procedure are discussed in Chapter 2. These methods 

are implemented in GAMESS, as well as the fiiU second order method that optimizes CI and 

orbital coefficients simultaneously 12. 
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The corrections introduced by replacing single-configurational wavefunctions (1.11) by 

multi-configurational wavefunctions (1.14) are sometimes called static correlation effects, in 

contrast with dynamic correlation^^ which corrects for interactions between electrons at very 

short inter-electronic distances. Static correlation must be taken into account in order to obtain a 

correct qualitative description of molecular systems, while dynamic correlation is needed to 

obtain energetics that are in quantitative agreement with experimental data. Dynamic correlation 

can be defined as the difference between the exact (nonrelativistic) energy and the energy given 

by the qualitatively correct wavefunction (which can be either Hartree-Fock, generalized 

valence bond (GVB)l'^, or MCSCF wavefunction). 

There are several approaches to account for dynamic correlation. One of these is the 

configuration interaction (CI) method. The idea of this method is to correct the initial 

(reference) wavefunction by mixing in contributions fi^om excited configurations. 

A CI waveftmction based on a single-determinant Hartree-Fock reference constitutes a 

linear combination of a large number of configurations, 4'c, = which the 
K 

coefficients are variationally optimized. The configurations are determined as different 

ways of replacing electrons from occupied orbitals to virtual orbitals. Oq usually corresponds 

to the ground state configuration, and all other - to excited state configurations. Including 

all possible configurations gives the fiill CI wavefunction, the exact wavefunction for a given 

basis set. For most molecules, however, the number of all possible configurations is extremely 

large and a full CI is not possible to achieve. Therefore, one normally needs to select the most 

important configurations. One of the most practical selections is to include configurations that 

correspond only to single and double excitations out of reference configuration Og. This 

scheme gives a CISD wavefiinction (CI singles and doubles). An improved CISD method was 

developed by Pople and coworkers and is called the quadratic configuration interaction (QCI) 

method^s 7ijis method is intermediate between the CISD method and the coupled-cluster 

singles and doubles (CCSD) method ^6. One of the variations of this method, QCISD(T), also 



www.manaraa.com

12 

includes triple excitations in an approximate way. This method gives very reliable correlation 

corrections to single determinant energies and is used for some applications included in this 

dissertation. 

CI methods based on multi-configurational (MCSCF) wavefianctions are called multi-

reference CI (MRCI). In these methods, the configuration list includes single and double 

excitations from several configurations used in the MCSCF expansion rather than from a single 

reference. The resulting wavefunction therefore includes some triple and quadruple excitations 

depending on the size of MCSCF reference wavefunction. MRCI wavefiinctions include a very 

large number of configurations and are very time consuming calculations. 

Another commonly used method for finding dynamic correlation energy is perturbation 

theory. The M0ller-Plesset (MP) method is based on Rayleigh-Schrodinger perturbation 

theory, in which the unperturbed wavefunction is the Hartree-Fock wavefunction The 

perturbation H' is the difference between the true electronic Hamiltonian H and the 
A 

unperturbed Hamiltonian Hq taken as the sum of one-electron Fock operators: 
n A ^ A A A 

= F{i) .  The energy is expressed as a sum of contributions of increasing 
1=1 

order from the matrix elements of H' between the eigenfunctions of . This expansion is 

usually truncated to include corrections up to second (MP2), third (MPS), or fourth (MP4) 

order. 

There are several different ways to define multireference perturbation theory (where the 

zeroth order unperturbed wavefunction is the multiconfigurational MCSCF wavefunction). 

The one used in this work is the second order CASPT2 method developed by Roos and 

coworkers'8. 

Nonadiabatic interactions between potential energy surfaces 

One way to provide a theoretical dreatment of chemical reactions that involve 

nonadiabatic processes is to start from the adiabatic potential energy surfaces'^. After adiabatic 

surfaces E'{R) for several electronic states 4'/,(r;/?) are obtained, one determines furst and 
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second derivative nonadiabatic couplings between these states in the regions where these 

surfaces cross or come close to each other^O. Although this approach still assumes that 

electronic and nuclear motions can be separated, nuclear motion is no longer restricted to a 

single potential energy surface, but can occur on two or several surfaces. The number of 

intersecting surfaces must however be small for this approach to work^. The total 

wavefunction is expanded as^O 

/ 

where is the adiabatic electronic wavefunction and /'(/?) is the nuclear wavefunction 

corresponding to the /th electronic state. Substimtion of (1.15) uito the Schrodinger equation 

gives the system of coupled equations for nuclear functions 

nucl 

h' 

a '"a ^ a '"a 

(1.16) 

where K" is the adiabatic correction (or the Bom-Oppenheimer diagonal correction)20 wliich 

modifies the potential energy surface : 

M\dR.  dR„ , (1.17) 

f" is the first derivative coupling matrix element: 

d 

dR„ 
4" (1.18) 

is the second derivative coupling matrix element: 

d' h i '=h¥'  
dR: 

•"¥ (1.19) 

The subscript r in die above expressions stands for integration over all electronic coordinates. 

The first and second derivative couplings are related as: 

^  =k" +h^ '  
J a aa ^ '^aa (1.20) 

dR„ 

Therefore, the first step is to calculate the first derivative coupling , and then (1.20) can be 

used to evaluate second derivative coupling matrix elements. 
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It has been shown^l that derivative couplings can be evaluated using analytic derivative 
dE' 

techniques that are routinely used in calculations of adiabatic energy derivatives The 
oR 

adiabatic wavefunctions can be expanded as MCSCF wavefiinctions (1.14). Differentiating the 

MCSCF variational conditions with respect to nuclear coordinates R results in a set of 

equations referred to as the coupled-perturbed MCSCF equations. These equations are 

necessary to solve in order to obtain derivatives of the MO coefficients which contribute to the 

nonadiabatic coupling matrix elements f". Forming and solving the coupled-perturbed 

MCSCF equations is the most difficult and time-consuming part of the evaluation of f^' and 

requires calculation of the full hessian matrix that includes second derivatives of the MCSCF 

energy with respect to orbital and CI coefficients. This matrix is also formed during fiill second 

order MCSCF^^, Therefore, the fiill second order MCSCF method implemented in GAMESS 

is not only a convenient way to optimize MCSCF wavefunctions, but also a first step towards 

evaluation of nonadiabatic coupling matrix elements. 
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CHAPTER 2. APPROXIMATE SECOND ORDER METHOD FOR ORBITAL 

OPTIMIZATION OF SCF AND MCSCF WAVEFUNCTIONS 

A paper accepted for publication in Theoretica Chimica Acta 

Galina Chaban, Michael W. Schmidt, Mark S. Gordon 

Abstract 

A quasi-Newton method involving a diagonal guess orbital Hessian with iterative 

updates has been proposed recently by Almlof for the optimization of closed shell SCF 

wavefunctions. The technique is extended in the present work to more general wavefunctions, 

ranging from open shell SCF through multi-configurational SCF. A number of examples are 

presented to show that convergence for closed and open shell SCF rivals conventional DIIS. 

For MCSCF wavefunctions, the method presented here requires more iterations than an exact 

second order program, but since each iteration is substantially faster, leads to a more efficient 

overall program. 

Introduction 

Most quantum chemistry calculations start from Hartree-Fock (HF) self consistent field 

(SCF), generalized valence bond (GVB), or multiconfigurational self consistent field 

(MCSCF) wavefunctions, which serve as starting points for obtaining more accurate 

wavefunctions that include electron correlation by means of configuration interaction, cluster 

expansions, or perturbation theory. 

Optimization of molecular orbitals expanded in a basis of atomic orbitals is the common 

step that is required to obtain all of these wavefunctions. The standard scheme for SCF orbital 

optimization is based on an iterative procedure involving diagonalization of the Fock matrix 
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normally supplemented today by a method referred to as Direct Inversion in the Iterative 

Subspace (DIIS) 2-4, An altemative approach with an almost equally long history is a 

second order method involving Newton-Raphson optimization. This method uses an 

exponential parameterization to obtain orbital rotation angles, and requires calculation of first 

and second derivatives of the energy with respect to these orbital coordinates (orbital gradient 

and orbital hessian). This method has not been very popular for optimization of HF 

wavefunctions, due to the high cost of computing the orbital hessian (which requires an 

integral transformation in the original formulations 8'^), as well as the large size of the hessian 

matrices which are difficult to store even for average size molecular systems. A solution to both 

problems was presented by Fischer and Almlof who suggested the use of a quasi-Newton 

approach using an approximate hessian to avoid its accurate computation, and also devised a 

very efficient recursive algorithm which allows the updating of the inverse hessian multiplied 

by gradient vectors without acmal storage of the hessian matrix. Another solution to both 

problems has been given by Shepard^^^ 5^ the accurate computation of the hessian requires 

additional builds of Fock-like matrices, and thus a considerable increase in computational 

cost ̂ 6. 

The purpose of this paper is to demonstrate how an approximate second order method 

based on the hessian update procedure suggested by Fischer and Almlof can be used to 

perform efficient orbital optimizations, not only for closed shell restricted Hartree-Fock (RHF) 

12, but also for other types of wavefimctions, namely restricted open shell Hartree-Fock 

(ROHF), GVB, and MCSCF. These procedures have been implemented in the electronic 

structure code GAMESS and are the present default convergence methods. 

1. Closed shell RHF wavefunctions 

Second order SCF methods for RHF wavefimctions have been described in previous 

papers . Here, we outline this method and present some details of our implementation of it. 
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The closed shell RHF wavefunction can be represented as an anti-synimetrized product 

of doubly occupied orbitals yfi: 

%«F=A[r,a)r,(2) ¥w(n~W„^(.N)] (1.1) 

where N is the number of electrons. The electronic energy is given by 

OCC occ 

E = t^h,+2(2J,-K,) (1.2) 
' '-J 

where hi- = Jv^,.(l)h(l)V,(1)<2^V; (1.3) 

Jy  = ("  I j j )  = J J V^,(1)V^, (2)—v^,(1)1^/2) dV, dV, (1.4) 
1̂2 

Kij = ((/• I ij) = J J V^,(1)V^;(2)—v^/l)v^,(2) dV, dV, (1.5) 
12 

The variational condition leads to the familiar Hartree-Fock equations 

Fv^, = e,VA, (1.6) 

where F is the Fock operator: 
OCC 

F = h + £(2J^.-Kp (1.7) 
j 

The standard method of solution of the Hartree-Fock equations includes constructing 

the Fock matrix in the atomic orbital (AO) basis, transforming it to the current molecular orbital 

(MO) basis, and diagonalizing. Diagonalization gives new MOs which are used for the next 

iteration, and this is repeated until convergence. 

In the second order method based on exponential parametrization the new set of 

orbitals is obtained from the old by an orthogonal transformation represented as an exponential 

of an antisymmetric matrix: 

Cnew = Cold U = Cold exp(A) , (1.8) 

where exp(Aj = I + A + 1/2 A^ + ... (1.9) 

A = 
0 x\ 

ft--X 0 J 
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The Xia elements are the L=nocc>®virt independent rotational parameters, each corresponding to 

a rotation between occupied orbital i and virtual orbital a. The variational condition is: 

^=i>.=0 (1.11) 

where gia are the elements of the orbital gradient of the energy. This equation can be solved 

using the Newton-Raphson method: 

5n=x„+i-x„=-B;;*-gn 

where 5n is the displacement vector, gn is the gradient vector, and Bn is the hessian matiix on 

iteration n. 

Using the Newton-Raphson method in a fixed coordinate system requires very time 

consuming computations of the first and second derivatives of the energy with respect to the 
dE 

parameters Xia- The first derivatives —— can be calculated exactly (see ref. 14 for exact 
K 

formulae), but the calculations involve many matrix operations. Our implementation, like most 

others, does not use fixed coordinates. Instead, we set the parameters Xia to zero at the 

beginning of each iteration and use the new displacement 6n = Xn+i to update the orbital 

coefficient matrix obtained on the previous iteration Cn+i = Cn exp (An+i). This gives much 

simpler expressions for the derivatives at x=0. For example, the first derivative^ is simply: 

dE 
Sia T = ''(r,|F|v^.) = 4F„ (1.13) 

where is an element of the Fock matrix transformed into the MO basis. The orthogonal 

tiransformation matrix U=exp (A) is obtained by tmncating the expansion to first order: 

exp(A) = I + A (1.14) 

followed by a Schmidt orthogonalization. We have found tiiat addition of the second order term 

1/2A2 does not lead to any decrease in the total number of iterations. Other more exact 

expressions for the rotation matiix, such as the Klein-Cayley formula 

U = ( I  + A/2) / ( I - A/2) (1.15) 
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have not been considered due to our desire to minimize the number of floating point operations 

to obtain U. 

The second derivative expressions at x=0 ̂  include not only Fock matrix elements, but 

also two-electron integrals in the MO basis. To avoid the expensive integral transformation 

required to compute the exact hessian matrix, we follow Almlof and start with an 

approximate diagonal hessian, which thus can be inverted trivially. The inverse orbital hessian 

is then updated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) updating formula via 

the recursive update recipe given in ref.l2. The greatest advantage of this procedure is memory 

savings, since the Hessian matrix itself does not need to be kept in memory. The recursive 

algorithm requires storage of three vectors of size L (where L is the number of rotational 

parameters) from each previous iteration. We write these vectors to disk and read them on each 

iteration to update hessian related information. 

Our experience shows that the choice of the approximate initial diagonal Hessian is very 

important to provide good convergence for this method. The use of a unit matrix for this 

purpose is certainly not satisfactory. Consideration of the general formula for the RHP orbital 

hessian ^ (i,j = occupied orbitals; a,b = virtual orbitals) 

= 4-4Fijd^+4[4iia\ bj) - {ja \ib)-{,ab\ij)] (1.16) 

suggests that the use of orbitals which are approximately canonical will increase the diagonal 

dominance of the hessian. Since our Huckel guess orbitals are not nearly canonical, we 

diagonalize the Fock matrix on the first iteration, and on the next cycle take as our approximate 

initial diagonal hessian 

^...=4F,,-4ir,=4(£„-e,) (1.17) 

since the two-electron integral terms from (1.16) are much smaller than the Fock contributions. 

At subsequent geometries, it suffices to use orbital energies from the previous geometry to 

form the initial diagonal orbital hessian. 
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The entire orbital update algorithm is shown in Figure 1. We begin the algorithm when 

the maximum orbital gradient element falls below a threshold, normally 0.25. Our Huckel 

guess orbitals normally meet this criterion after the conventional diagonalization on the first 

iteration, but if the starting orbitals are very poor we rely on conventional extrapolation to bring 

us within the radius of convergence of our second order SCF (SOSCF) method. The SCF 

process is considered converged when the maximum orbital gradient component is one 

microhartree. This is roughly equivalent to 10"^ convergence of the density matrix. Since 

applications such as nuclear gradient and hessian computation, perturbation theory, and 

Koopmans' theorem require canonical orbitals, we always perform one Fock matrix 

diagonalization after final convergence. 

The convergence of this approximate second order method is not, of course, quadratic 

because of the various approximations used, but it is superlinear and is comparable with that of 

the DELS method 2. However, the number of computations is less for the approximate second 

order method than for DIIS. The floating point operation (FLOP) count of our RHF DIIS 

implementation is roughly 17 N^, from seven matrix multiplies (14 N^) and one 

diagonalization (10/3 N^). Taking nocc = 1/3 N as typical of RHF calculations. Figure I shows 

that the approximate SOSCF orbital improvement requires roughly FLOPs. 

Table 1 shows several examples of organic molecules converged with the conventional 

Fock diagonalization method + DEIS convergence accelerator, compared to the second order 

SCF method described above. The two final columns show the times needed for computation 

of integrals and construction of the Fock matrix in direct mode. As can be seen from the table, 

the number of iterations is practically the same for both methods (± 1 iteration), but the time 

required to solve the Hartree-Fock equations is about 3 times less for SOSCF than for DOS. 

This is not very unportant for a serial mn, since much more time is required to calculate 

integrals and form Fock matrices than to solve the Hartree-Fock equations. However, if 

integrals are calculated in parallel (assuming perfect parallelization of the integrals and Fock 
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build), then the smaller time of the sequential solve step gives better results for speedups. For 

the last example of cyclic AMP, the theoretical speedup on 32 nodes, 

DHS: (24,262 + 275) / (24,262 / 32 + 275) = 23.7 

SOSCF: (23,647 + 77) / (23,647 / 32 + 77) = 29.0 

is much better in the case of second order SCF. 

Another advantage of using this second order SCF method is a decreased number of 

iterations during geometry optimizations. Table 2 presents the number of SCF iterations on 

each geometry optimization step for glycine. The number of iterations is consistently 1-2 

iterations less for second order SCF on all subsequent geometries. This saves a total of 18 

iterations during this optimization run. 

2. High spin open shell ROHF wavefunctions 

The high spin coupled restricted open shell HP wavefunction can be written as: 

where N-M is the number of doubly occupied (closed shell) orbitals, and M is the number of 

singly occupied (open shell) orbitals. 

Previously, high spin ROHF wavefunctions were optimized in GAMES S by 

diagonalizing a single Fock matrix in the MO basis, constructed as follows : 

ROHF (2.1) 

ROHF (2.2) 

where Fa and Fp are alpha and beta Fock matrices transformed to the MO basis. 

F2, FJ, and Fq are doubly, singly, and zero occupied diagonal blocks: 

^2 = 

Fx = + KoFp 

^0 = K-Pa + K-Fp (2.3c) 

(2.3a) 

(2.3b) 
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The best convergence rate is found with Roothaan's A and B canonicaiization coefficients'9. 

To use our quasi-Newton approach for ROHF wavefunctions, we construct the orbital 

gradient vector from the off-diagonal blocks of the above Fock matrix: 

in = if / = doubly occupied, k = singly occupied orbital (2.4a) 

Sia - doubly occupied, a = virtual orbital (2.4b) 

gta = FZ ifk = singly occupied, a  = virtual orbital (2.4c) 

As in the case of RHF, we diagonalize the above Fock matrix on the very first iteration and use 

its eigenvalues e to approximate the initial diagonal hessian: 

^ik.ik ~^k~ (2.5a) 

B,aJa=£a-£. (2-5b) 

(2-5c) 

where the index i denotes doubly occupied, k singly occupied, and a virtual orbitals. The rest 

of our implementation is the same as for closed shell RHF wavefunctions. 

3. GV6 and low spin ROHF wavefunctions 

A Generalized Valence Bond (GVB) wavefiinction can be represented as 20.3 ; 

A (3.1) 

where 4'core is a product of doubly occupied orbitals, 4'open is a product of singly occupied 

orbitals, and 
'^potr 

(1)^^,(2) + C„,0„,(1)0„,(2)) (a(l)^(2)-)3(I)a(2)). (3.2) 
1=1 

Here, (pgi and are orthogonal GVB natural orbitals, and Cgi and Cui are GVB 

configuration interaction (CI) coefficients. This wavefiinction leads to the energy 

expression^O; 

occ occ 

£ = S2A,+X(Vs+^s'<^i) (3-3) 
• 'J 
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where =((j),.|h|<j),.) (3.4) 

J a = («I m = J ̂ >,(l)P(l)0,(l)^v, (3.5) 

= 071 (/) = j 0,(l)K^(m(l)^v, (3.6) 

h, J/(l), and K/(l) are one- and two-electron (Coulomb and exchange) operators, and fi, 

aij, bij are orbital occupation coefficients (see refs. 3 and 20 for their definitions). 

The variational condition using this energy expression is: 

5E = X(«^,|F'|0,) = O (3.7) 
I 

where F' is the Fock operator for the orbital 0/: 
OCC 

r=f,b + '£{a,J'+b,K') (3.8) 
j 

Orbitals with the same occupation coefficients, and therefore the same Fock operator, form a 

shell. 

Several methods have been used to optimize orbitals of GVB wavefunctions. The 

standard OCBSE (orthogonality constrained basis set expansion) procedure is based on 

diagonalizing the Fock matrices corresponding to each shell ^0. An orbital DIES method has 

been suggested to improve convergence of this method ^. Another approach is to diagonalize 

a single combined Fock matrix. Several possible generalized Fock operators are discussed in 

ref 3, together with the use of DEIS with this approach. Although their suggested GVB-DEIS 

Fock operator ^ mtroduces second-order mixing, we find that our quasi-Newton optimization 

based on the hessian update method of Fisher and Almlof 12 works more reliably and in fewer 

iterations. 

The general formula for the GVB orbital gradient (that has to be brought to zero at 

convergence) is: 

f)F 
= (3.9) 

which reduces to: 
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gy = AFfj ify = occupied orbital from shell /, / = virtual orbital (3.10) 

gij=Q if orbitals / and j belong to the same shell (3.11) 

g.j = if i and j are occupied orbitals from different shells I and J (3.12) 

The general formula 3.8,21 for the diagonal elements of the GVB orbital hessian in the MO 

basis is; 

2-V 
B •• = = A(.F.^ - F-) - 4(F- - F') 

+8(a// + ajj - la^j )(ij I ij) + 4{b-^ + - 2b-j)[(//1 jj) + (LY 1 LY)] 

In the case for which i is a virtual orbital, F^= 0, an = bu =0, ay = bij =0, and 5y,y becomes: 

B,., = - AF^ + A{2a, + b..){ij I ij) + Ab,{ii I jj) (3.14) 

Since the (ii\jj) = /// and iij\ij) = ATy matrices corresponding to open-shell J and K operators are 

akeady available in the MO basis as a by-product of the GVB Fock matrix formation, we can 

calculate all diagonal hessian elements exactiy, except those that correspond to core - virmal 

rotations. In the case for which j is doubly occupied and i is a virtual orbital {ajj = 2, bjj = -1): 

B^i,j = 4ir/ - + 4(3((/1 ij) - iii \jj)) (3.15) 

It would require additional integral transformation work to get the two-electron integrals in 

(3.15), and therefore we neglect these terms. Fortunately, the neglected terms are much smaller 

than the remaining part 

^.,=4i^-4i^ (3.16) 

which is the same expression we use in the case of closed-shell RHF. Note that all terms are, 

however, important for hessian elements corresponding to core - pair, pair - pair, and pair -

virtual rotations, and these are calculated exacdy. As in the case of RHF, we perform one 

single combined Fock matrix diagonalization on the first iteration to provide a better initial 

orbital hessian for our approximate second order (SOSCF) method. 

Several examples of GVB calculations are given in Table 3. The middle column of the 

table represents the original one-pair GVB-DHS 2-c implemented in GAMESS several years 
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ago, while the multi-pair results are obtained from our implementation of the GVB-DIIS 

multishell Fock operator method given in ref.3. GVB wavefiinctions can be difficult to 

converge, and each of the three methods fails from time to time. We find, however, that the 

approximate second order method is the most successfiil in converging the majority of GVB 

cases we have tried. 

The energy formula (3.3), as well as the gradient (3.9) and hessian (3.13) formulae 

can be also used for different kinds of low spin ROHF calculations by using the appropriate 

coefficients^-, a,y, and bij. GAMESS contains values of these coefficients for some cases of 

smgly occupied orbitals, and they can be input for other cases of partial orbital occupancies. 

Both the DnS method based on a single combined Fock matrix and the approximate second 

order method work very successfully for all kinds of low spin ROHF calculations. Two 

examples are shown in Table 4. 

4. MCSCF wavefunctions 

The approximate second order update method is also implemented for the orbital 

improvement step for MCSCF wavefimction optimization. Space precludes a fiiU review of all 

previously proposed MCSCF optimization schemes here. Early first order methods based on 

the Generalized Brillouin Theorem 22-24 ^gre abandoned by most workers with the advent of 

second-order Newton-Raphson methods 25-27 Recentiy a Renormalized Fock Operator 

approach based on diagonalization of a matrix of single excitation matrix elements has been 

proposed by Meier and Staemmler 28. This method exhibits first order convergence, and has 

recendy been implemented in H0ND08 by Dupuis 29 . This code served as the basis of our 

approximate second order MCSCF scheme. 

The MCSCF wave function ^ is a superposition of electronic configurations Ok : 

^MCSCF ~ ̂  » (4.1) 
K 
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where are the CI coefficients. Typically, many of the orbitals can be constrained to be 

doubly occupied in all configurations - these are core (or inactive) orbitals and will be denoted 

i,j,k. Active orbitals are allowed to have variable occupation numbers and are denoted t,u,v,w. 

Virtual orbitals are those that are empty in all configurations, and are denoted a,b,c. We use the 

notation p,q,r,s for general orbitals. 

The energy expression for an MCSCF wavefimction is: 

« = (4.2) 
pq ^ pqrs 

where ypq and Tpqrs are the elements of one- and two-body density matrices, depending on 

A^. The one- and two-electron integrals and (^pq I rs) depend on the orbitals. The 

optimization of CI coefficients and molecular orbitals may be separated, or unfolded, into two 

steps: solving the secular equation for A^, followed by some sort of orbital improvement 

scheme. 

The first order method suggested for MCSCF orbital improvement by Meier and 

Staenunler 28 and implemented in HONDO by Dupuis 29 has many advantages. Aldiough it 

requires more iterations to converge than second order (Newton-Raphson) methods, the time 

needed for each iteration is much less. Each macroiteration in the first order algorithm includes 

several microiterations which skip the CI step and part of the integral transformation. Each 

microiteration 29 consists of diagonalization of an approximate Pock matrix which is formed 

using old density matrices and partially updated two-electron integrals. The fairly numerous 

microiterations in the first order scheme add a modest, but non-negligible, amount of time to 

each macroiteration. In contrast, the high cost of the full second order method comes from the 

construction of the orbital hessian matrix which requires (pt I qu) and {pq I tii) types of 

molecular integrals with two indices p,q running over the entire orbital space. Only a single 

general orbital index needs to be transformed in order to constmct the Lagrangian matrix for the 
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first order MCSCF. Of course, another problem associated with using second order methods is 

storage of the orbital hessian matrix. 

The method we have implemented in GAMESS is an attempt to use all the advantages 

of the first order MCSCF method, while also introducing some features of the second order 

approach. Again, we construct an approximate initial diagonal hessian and use the update 

procedure suggested by Fisher and Almlof . The resulting convergence behavior is not, of 

course, as good as that of an exact Newton-Raphson method, but is better than that of a first 

order method. 

Our implementation of the approximate second order method in GAMESS uses part of 

the first order MCSCF program written by Dupuis for HONDO 29. The Lagrangian matrix G 

calculated by the first order code is used to construct the orbital gradient vector. The 

components of the orbital gradient corresponding to core-virtual (a), active-virtual (b), and 

core-active (c) rotations are: 

riF 
S^a=^= 4(Fr + = C?,, (4.3a) 

f)F 
R. = = 25;Y.f,r *2j^r^i.au\vw) = G„ (4.3b) 

1/ M IR U/ 

f\F 
^.=|^=4(/-r+o-2 

ax,. 
XY,A"" + Sr_(miwv) = G,-G, (4.3c) 

where /and F are the one- and two-body density matrices, and and are two Fock 

type matrices: 

core 

f^'*=A„+X[2(P9l«)-(p<rl9A:)] (4.4) 
k 

act 

Fp" =  X I  " V ) - T ( P M  I  ^ V ) ]  ( 4 . 5 )  
u.v 

Explicit expressions for the MCSCF orbital hessian in terms of two-electron integrals 

and density matrix elements are given in ref.26 . The exact formulae for diagonal orbital 

hessian elements are: 
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B».- = ̂  = 4(C" + O - + IR)+4 [3(<"-1 AI) - (AA I IT)] (4.6a) 

5«.. = 0 = 2Y„C" - 2Sy.C - 2 Sr_(r» I w) 
(4.6b) 

+25^{R^(AA I MV) +2R^(AV I AI/)} 
tf.v 

3x1 

E 

+2Y„I.R - 2XY„C" - 2 SR_(M I VW) 
U (4.6c) 

+ 1 ii) + 2R .̂̂ (Mi IVI)} 
tf.v 

+4X{(5,„ - Y,„)[3(W/ I ti) - {tu I«)]} 

No active-active hessian elements are shown, as we restrict our method to complete active 

spaces. In the framework of the first order MCSCF approach ^9, an integral transformation is 

performed only for , and (pulvw) types of integrals with only one general index p 

running through all orbital space, and three other indices over active orbitals only. 

Accordingly, we ignore those terms of the above expressions that contain two-electron 

integrals with two non-active mdices. The truncated diagonal hessian contains only 

matrix elements and (tu\vw) integrals with all indices in the active space. This 

approximation is satisfactory for Bia,ia hessian elements since the last term is small compared 

with the first two. In the case of Btaja and elements, the last terms may be quite 

substantial. Ignoring these terms may result in negative signs for some of the hessian elements. 

This causes severe convergence problems when starting a Newton-Raphson optimization from 

such an initial hessian. 

Toimprovethissituation, weadd to Btaja hessian 

elements. In the limit of active orbital t becoming weakly occupied ( —> 0 ), the final term 

of 4.6b and 2y„F^f both vanish. In the limit of active orbital t becoming nearly filled ( 
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y„ ^2, ^ 2y„„ -tY„V ). becomes idenUcal to the final tenn of 4.6b. 

Similarly, in the limit t -> doubly occupied, the two final terms in 4.6c reduce to the same 

expression as 2y„F^. The 2y„F°" terms prove to be a satisfactory compensation for the 

exact terms and provide a positive definite starting hessian for use with the quasi-Newton 

update procedure. The resulting diagonal hessian used to start the approximate second order 

MCSCF orbital improvement is therefore calculated as follows: 

Bu..ia = 4(C" + C) - + Fn (4.7a) 

S,.,. = (4.7b) 
U U.V.U' 

B„. ,=MFT+K-^ -Mfr"+T)  

+2r.Fr-2-^r.C - 2 i "r)+2y,/vr 
U TT.V.W 

A previous attempt to reduce the amount of work in the integral transformation by 

approximating the orbital hessian has been made by Camp, Nicholas, and King ^0. These 

workers made the same approximation of dropping the final term of 4.6a, but calculated 

sufficient integrals with two virtual indices to evaluate the final terms of 4.6b and 4.6c. Our 

approach is to transform only one virtual index, requiring the additional approximations just 

described. 

Since very little additional work is required to constmct the approximate diagonal 

hessian and it is done only on the initial iteration, the cost of each quasi-Newton iteration is less 

than that of one first order macroiteration, which consists of several Fock matrix 

diagonalizations (microiterations) 28,29 -phe convergence rate is also better than that of the first 

order method. As a result, the approximate second order method is very fast and useful for 

MCSCF calculations of very large molecular systems. 

Table 5 shows several examples of MCSCF calculations using three methods for orbital 

improvement: 1) an exact second order method with the full orbital hessian matrix calculated on 
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each iteration; 2) a first order MCSCF method based on effective Fock matrix diagonalization, 

supplemented by DIIS convergence acceleration 29 ; 3) the approximate second order method 

described above. As can be seen firom the table, the approximate second order approach 

provides substantial savings of computer time. Note that the final example is a MCSCF(10,9) 

calculation of 7-azaindole (C7N2H6,165 AOs) which proved impossible to do with the exact 

second order program because insufficient memory was available. About 22,000,000 words of 

memory are required for the orbital update procedure with the exact Newton-Raphson scheme, 

but less than 1,000,000 words are needed in the case of the approximate quasi-Newton 

approach. The exact second order method is, however, preferable for MCSCF calculations 

with large numbers of configurations, but small basis sets, since in this case the CI part 

(solution for A^s) is more time consuming than the orbital improvement part, and the least 

number of iterations is desirable. 

Conclusion 

We have demonstrated an efficient way to optimize molecular orbitals for different 

types of wavefunctions (RHF, ROHF, GVB, and MCSCF) by extending the approximate 

second order method with a diagonal hessian update procedure due to Fisher and Almlof. The 

algorithm is quite simple, and it is remarkable that essentially the same process can be used to 

optimize all these classes of wavefiinctions. Details relating to our implementation, and explicit 

formulae for the exact orbital gradient and the approximate diagonal orbital hessian have been 

presented for each kind of wavefimction. The method is faster than the standard diagonalization 

techniques used for RHF and GVB. Its convergence properties (number of iterations) are 

comparable to that of DIIS accelerated SCF methods, but the time needed for solving the HF 

equations is about three times less. In addition, die method eliminates the traditional 

diagonalization step (except for the final orbital canonicalization) which is not easily 

parallelizable. For MCSCF, the approximate second order orbital update is trivial compared to 
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the cost of the orbital gradient, and convergence rates are intermediate between the 

Renormalized Fock Operator first order method and the exact second order approach. 
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STEP COST a 

0. Estimate on first iteration 

1. Obtain gradient in MO basis ^ 

2. Apply BFGS updates to obtain the 

2L 

2nocc N2 + 2LN 

orbital rotation parameters x=B"^ g 16L + 20 (niter - 2) L 

3. Generate transformation U=I+A from x negligible 

4. Schmidt orthogonalize U 

5. Rotate orbitals, Cn+i = Cn U 

2N3 + N2 

2N3 

a N is the size of the AO basis, L is the number of independent orbital rotation parameters, 

and niter is the number of iterations since SOSCF was initiated. 

The costs of these steps are wavefunction dependent, and values shown are for RHF 

computations. 

Figure 1. Summary of approximate second order SCF algorithm, with FLOP count. 
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Table 1. Comparison of second order SCF and DES methods \ 

Molecule # basis functions # iterations SCF time (sec.) Pock time (sec.) 

DHS SOSCF DHS SOSCF DES SOSCF 

Glycine 85 12 12 3.1 0.8 355 same as DES 

Thymine 149 13 13 17.4 5.7 2,243 same as DES 

Nicotine 208 13 12 48.4 14.1 6,361 6,123 

Luciferin 294 14 15 153.6 51.1 13,733 14,574 

Cyclic AMP 356 14 13 275.4 77.4 24,262 23,647 

^ The calculations were performed on a 67 MHz IBM SP2 thin node mnning sequentially. The 

basis set is 6-31G(d), and none of the molecules possesses any symmetry. All runs used direct 

SCF techniques. 

Table 2. Number of SCF iterations during geometry optimization of glycine molecule. 

Geometry step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

DES 13 11 11 10 10 8 8 8 8 8 9 9 7 7 7 6 

SOSCF 13 10 10 9 8 7 7 7 6 7 8 8 6 6 5 5 
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Table 3. Comparison of different GVB orbital optimization methods (number of iterations). 

Molecule OCBSE GVB-OnS a SOSCF 

Methylene, CH2, IP 10 11 10 

Bicyclobutane, C4H6,1P doesn't converge 23 18 

Disilane, Si2H6, IP doesn't converge doesn't converge 10 

Ethylene, C2H4, 2P 12 11 11 

Stannobenzene, 3P 46 doesn't converge 31 

Cyclic N2O2, 5P 23 doesn't converge 14 

^ These results are given for Single Fock Operator + DOS methods implemented in 

GAMESS (single-pair GVB-DIIS 2c and multi-pair GVB-DIIS ^ ). 

The notation nP indicates the number of GVB pairs used. 

Table 4. Comparison of different methods for low-spin ROHF calculations. 

Molecule OCBSE DnS SOSCF 

H2COn->7i* lA" 

Y atom s^d^ 

doesn't converge 10 

doesn't converge 8 

11 

9 



www.manaraa.com

38 

Table 5. Comparison of three MCSCF orbital improvement methods 

2nd order method 1st order method approx. 2nd order 

Molecule ^ iterations time (sec) iterations time (sec) iterations time (sec) 

SiH2 7 18 23 25 12 13 

N3F 8 333 31 270 16 145 

C4H4 7 1398 12 496 12 441 

CH3ASNCH3 9 5608 34 2432 14 1194 

7-azaindole - - 14 15,018 9 10,098 

^ CPU timings for these runs are taken on 42 Mhz model 350 IBM RS/6000 workstation. 

^ The MCSCF(n,m) examples are complete active spaces with n electrons in m orbitals: 

1)MCSCF(6,6)/6-31G(d,p) calculation of triplet SiH2 (29 AOs, 51 CSFs); 

2)MCSCF(6,6)/6-31G(d) calculation of cyclic isomer of N3F (60 AOs, 92 CSFs); 

3)MCSCF(4,4)/6-31++G(d,p) ground state of C4H4 (100 AOs, 12 CSFs); 

4)MCSCF(4,4)/DZP for CH3-As=N-CH3 compound (103 AOs, 12 CSFs); 

5)MCSCF(10,9)/D2T for 7-azaindole (165 AOs, 5292 CSFs). This job is impossible 

to run with the exact second order program because of memory requirements. 
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CHAPTER 3. ON THE STRUCTURE AND STABH^ITY OF GEOMETRICAL 

ISOMERS OF n3f 

A paper published in Journal of Chemical Physics 

Galina Chaban, David R. Yarkony, and Mark S. Gordon 

Abstract 

The potential energy surfaces for the N3F molecule have been studied using multi-

configurational wave fiinctions. Two new isomers were found, one on the singlet (^A') and 

one on the triplet (^A") surface. Both isomers have a 3-membered cyclic structure and Cs 

symmetry. The singlet cyclic isomer is endoergic relative to the open fluorine azide by 15-17 

kcal/mol. Its kinetic stability is close to the stability of the open isomer: the barrier separating 

the cyclic isomer from the dissociation products N2(XlZp+NF (a^A) is about 13-17 kcal/mol 

and is lower than the barrier to isomerization. The triplet cyclic isomer is much higher in energy 

(about 70 kcal/mol), with a barrier to dissociation to N2(XlZp+NF(X3z~) on the order of 15 

kcal/mol. Crossings of the ^ A' and the ^A" surfaces may allow the cyclic singlet isomer to 

predissociate to the ground state products, N2(X^Sp+NF(X3s-). It is shown, however, that 

the singlet-triplet surface of intersection lies "behind' the barrier to singlet decomposition, so 

that spin-forbidden predissociation will not preclude detection of cyclic N3F. 

I. Introduction 

The very high heat of formation (about 130 kcal/mol) of fluorine azide (NNNF) makes 

it a candidate as an energetic material. The equilibrium stiucture of fluorine azide and its 

decomposition to N2(XlSp + NF(alA) have been studied in a number of experimental and 

theoretical works, l- 6 It was found that gas phase thermal dissociation of fluorine azide yields 



www.manaraa.com

40 

metastable NF(alA) radicals, and the experimental activation barrier for this dissociation is 15 

kcal/mol.2 Theoretical calculations of the potential energy surface(PES) for the dissociation, 

including electron correlation via configuration interaction (CI) and fourth order perturbation 

theory (MP4) with zero point energy corrections predict a barrier height of about 12-16 

kcal/mol,4.5 in good agreement with the experimental value. Both experimental and theoretical 

studies predict a singlet-triplet crossing to lie outside the barrier, that is, in the (product) 

N2(XlZp + NF(X3Z-) channel. 

The low barrier to dissociation (15 kcal/mol) is responsible for the explosiveness of 

fluorine azide and is the main obstacle to using this compound as an energy source. In this 

work other regions of the lowest singlet PES of N3F will be explored in an attempt to 

identify additional isomers that might be more stable kinetically than fluorine azide. Also 

considered is the lowest triplet PES and the possibility of radiationless decay attributable to 

spin-orbit induced coupling of the singlet and triplet states. 

Section IE discusses the theoretical approach. Section m presents the results of our 

calculations and Section IV simmiarizes and concludes. 

II. Theoretical Approach 

The geometrical parameters of the stationary points on the PESs were determined at the 

restricted Hartree-Fock (RHP), second order perturbation theory (MP2)7, single pair 

generalized valence bond (GVB-1P)8 and multiconfigvirational self-consistent field (MCSCF)9 

levels of theory using the standard 6-3 lG(d) basis sets^® [denoted BASIS-1]. Minima and 

transition states were verified by determining the number of negative eigenvalues (0 for 

minima, I for transition states) of the energy second derivative (hessian) matrix. The hessians 

were determined analytically for RHF, GVB, and MP2 wavefunctions, and by divided 

difference of analytic gradients for general MCSCF wave functions. Relative isomer energies 

were recalculated at higher levels of theory: fourth order perturbation theory (MP4) 11, 
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quadratic configuration interaction (QCISD(T))12, multireference perturbation theory 

(CASPT2)13, and multireference configuration interaction (MRCI). 14 

Potential energy surfaces for dissociation (where one can expect considerable 

configurational mixing) were studied using MCSCF wave functions with (6,6) and (10,10) 

active spaces. Here the notation (X,Y) denotes all the configuration state functions (CSFs) 

obtained from distributing X electrons in Y orbitals. The character of these active spaces is 

discussed in Section HI. The intrinsic reaction coordinate (IRC) method was used - at the 

MCSCF(6,6) level with BASIS-1 denoted MCSCF(6,6)/1 - to connect all transition states to 

their corresponding minima. The IRC algorithm used was the second order method developed 

by Gonzalez and Schlegel 15 with a step size of 0.3 amul/2 bohr. Barrier heights were 

reevaluated using single point calculations. These calculation were performed using 6-3 lG(d), 

6-31 lG(d)[denoted BASIS-2] and 6-31 lG(2d) [denoted BASIS-3] basis sets^^ at the single 

reference perturbation theory, MP2 and MP4, and QCISD(T) levels and using MCSCF-based 

multiconfigurational methods including second order intemally contracted CI (SOICCI - all 

single and double excitations from a (6,6) or (10,10) reference space), MRCI ( single and 

double excitations from reference CSFs) and CASPT2 (second order perturbation theory with 

a MCSCF(6,6) or MCSCF(10,10) reference wave function). Several quantum chemistry 

programs were used including: GAMESS17 for MCSCF calculations, MOLCAS-2I8 for 

CASPT2, M0LPR019 for SOICCI and (some) MRCI, and GAUSSIAN-9220 MP2, MP4 and 

QCISD(T) calculations. 

For reasons described below a section of the surface of intersection for the lowest 

singlet and tiiplet states was explored using methods developed by Yarkony and co-workers2l. 

The states were described at the MRCI level. The nitrogen Is and fluorine Is and 2s orbitals 

were kept doubly occupied. The remaining twenty electrons were distributed among the 

[activel(5-ll a',2-3 a"), active2(12a', 4-5 a") .virtual] orbitals as: [18,2,0] [17,3,0], 

[16,4,0], [18,1,1], [17,2,1], [18,0,2], [17,1,2] and [16,2,2]. The four molecular orbitals 
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with the highest orbital energies were excluded from the virtual space. All CSFs arising from 

these electron configurations were included in the MRCI expansion. The molecular orbitals 

were in turn determined from CAS state-averaged MCSCF calculations using the activel space. 

The character of the active orbitals is discussed in Section EI (see Table 3 and Figure 3). 

These calculations were performed using [4s2pld] Duiming double zeta polarization22, and 

[5s4pld] McLean and Chandler bases^^, denoted BASIS-4 and BASIS-5 respectively. These 

levels of treatment will be denoted MRCI/4 and MRCI/5 respectively. Here and throughout 

this work the designation M/J will refer to a calculation performed at level of theory (or 

method) M using BASIS-J. 

Additional calculations were performed at the CCSD(T) level of theory24, with two 

basis sets, 6-311++G(d,p)20 [BASIS-6] and 6-311-H-G(2df,2pd)16 [BASIS-7] and at the 

MRCI level using 5s4p2d25 bases [BASIS-8]. 

III. Results 

I. Structural isomers 

The key result of this work is the discovery of a new metastable cyclic isomer of N3F 

that is endoergic relative to the open isomer N-N-N-F (see Table I and Figure 1, structure 1 

(•A') ). This new isomer has a three-membered cyclic structure with Cs symmetry (see Figure 

1, structure 2_(lA')). Geometrical parameters for this cyclic isomer are shown in Table 1. 

The MP2/I and MCSCF( 10,10)71 levels of theory predict very similar geometries, while the 

MRCF4 and MRCI/5 bond distances are only sligthly shorter. The cyclic isomer 2 (^ A') has 

one N=N double bond, R(N^N2) ~ 1.2A compared to re[N2(XlXp] =1.10A,26 and two weak 

N-NF single bonds. The NF group, R(N3F) ~ 1.35A compared to re[NF(alA)] = 1.3lA,26 

forms an angle (s 0) of ~ 105° with the plane of the ring. This structure was verified to be a 

minimum at all levels of theory used in this paper. 

Two structures [open 4 (3A")and cyclic 5 (^A")] were also found to be local minima 
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on the triplet PES at the ROHF/l and UHF/1 levels (see Figure 1). However, at the Hartree-

Fock level of theory the open structure is very weakly bound and separated from dissociation 

products by a barrier of only 3-4 kcal/mol. At the MP2 level this structure is not stable. 

Therefore, this open structure was not pursued at higher levels of theory. Figure 1 and Tables 

1-2 give the geometrical parameters and energies of the cyclic triplet structure 5 (^A"). The 

triplet cyclic isomer is very high in energy, about 70-80 kcal/mol higher than die ground state 

singlet open isomer at MP2/1 and CASPT2/MCSCF(6,6)/1 levels of theory. Although it is 

stable kinetically (see below), it wUl decay radiatively to the ground singlet state. 

2. Decomposition of cyclic isomers 

The decomposition of cyclic N3F to N2(X^Zp+NF(alA) was studied using multi-

configurational wave functions with active spaces ranging from (6,6) to (14,12). The 

minimum active space (6,6) necessary for a correct qualitative description of the dissociation 

process includes three bonding orbitals (the 10a', 1 la' and 4a" orbitals, corresponding to two 

N2 - NF bonds and the N-N k- bond) and the three corresponding antibonding orbitals (the 

5a", 6a" and 12a' orbitals). Upon dissociation these orbitals convert to two k (N-N), two 

7t*(N-N), and two 7C*(N-F) orbitals. The MCSCF(6,6)/1 treatment was used to locate the 

transition state and analyze the IRC path connecting the transition state with the cyclic isomer 

and products of dissociation. The energy along the IRC path is shown in Figure 2. From this 

figure it is seen that the IRC is dominated by R(N2-NF). The MCSCF natural orbitals are 

shown in Figure 3, and the corresponding occupation numbers are listed in Table 3. It is seen 

from Table 3 that the occupation number of the 4a" orbital decreases from 1.93 (essentially 

doubly occupied) in the cyclic isomer to 1.0 in the dissociation products. Simultaneously, the 

12a' orbital increases its occupation from 0.05 to 1.0. Thus, this wave function dissociates to 

N2(X^Zp + NF(alA) with two half occupied n*(N-F) orbitals. 

With the foregoing information in hand die energetics were reinvestigated using larger 

basis sets and more flexible wave functions. These results are collected in Table 2. The 
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geometry of the transition state was reoptimized at the MCSCF(10,10) level. The bigger active 

space was constructed by adding two bonding orbitals: aCN^-N^) and a(N3-F), and the two 

corresponding antibonding orbitals to the (6,6) active space. The transition state at the 

MCSCF(10,10) level is similar to the MCSCF(6,6) level result, although R(N3-F) and R(N2-

N^) increase by 0.06A and 0.05 A respectively, see Table 1. 

The height of the barrier to dissociation was recalculated using the CASPT2 method 

with (6,6), (10,10) and (10,8) active spaces using BASIS-1. Unlike the (10,10) active space 

the (10,8) active space added two doubly occupied nitrogen lone pairs to the (6,6) active space. 

Upon dissociation, these lone pairs become two 7C(N-F) orbitals. Single point CASPT2 

(10,10) calculations were also performed using BASIS-2 [6-31 lG(d)] and BASIS-3 [6-

31 lG(2d)]. As seen in Table 2, there is little variation in the CASPT2 predicted barrier 

heights, as a function of active space or basis set. The predicted barrier is in the 13-17 

kcal/mol range. The barrier height is discussed further below. The exothermicity of the 

dissociation from the cyclic isomer is predicted to be 11-14 kcal/mol at the CASPT2/2 and 

CASPT2/3 levels. 

The dissociation of the triplet cyclic isomer to N2(XiI^ and NF(X3Z-) was studied at 

die MCSCF(6,6)/1 level. The transition state located at this level of theory has no synmietry. 

Its structure 6 (^A") is shown in Figure 1, and the geometrical parameters are given in Table 1. 

Note that the R(NiN3), i=l,2 are considerably shorter in the cyclic triplet than in the 

corresponding singlet. The reaction path for the dissociation is shown in Figure 4 . The height 

of the barrier estimated by a single point CASPT2/MCSCF( 10,10)71 calculation at the 

MCSCF(6,6)/1 geometry is -16 kcal/mol, and the exothermicity of the reaction is about 106 

kcal/mol. 

The triplet cyclic isomer 5 (^A") is 61 kcal/mol higher in energy than the corresponding 

singlet 2 (1 A') at the CASPT2(10,10)/1 level. At the same level of theory, the asymptote 

N2(XlIp+NF(X3Z-) is 36.8(36.95) kcal/mol below the singlet asymptote. 
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N2(X^Zp+NF(alA), in excellent agreement with the experimental value26 given 

parenthetically. Thus the 1 ̂ A' and PA" potential energy surfaces must cross. This crossing 

may lead to spin-forbidden predissociation of the 2( l A') moiety. Note that the energy 

recovered from singlet cyclic N3F would be 45, rather than 8, kcal/mol if the spin-forbidden 

path were followed. At the singlet transition state E(1 ̂ A") - ECPA") - - I kcal/mol at the 

CASPT2( 10,10)71 level of theory, suggesting a crossing in this region. However larger 

singlet-triplet separations, -37 kcal/mol, are observed using coupled cluster wave functions 

(see discussion below). Thus a more precise description of the surface of intersection is 

desirable. This point is addressed in subsection in.4 below. 

3. Rearrangements between isomers on the singlet PES 

Attempts to locate a transition state for the rearrangement between the open and cyclic 

isomers on the singlet PES were unsuccessful at all calculational levels except for GVB( 1P)/1. 

The height of the isomerization barrier at the GVB(1P)/1 level was found to be 11.5 kcal/mol 

(from the cyclic isomer). This is close to the barrier height for dissociation of the cyclic isomer 

at this computational level (11.8 kcal/mol). At the MCSCF(6,6)/1 and MP2/1 levels of theory, 

the cyclic isomer dissociates to N2(Xi2p+NF(alA) before it reaches the isomerization 

transition state. It is likely that the barrier for isomerization from the cyclic isomer is higher 

than the barrier to dissociation of this isomer, and therefore that the intramolecular 

rearrangement between the cyclic and open singlet isomers does not occur. 

Four other transition states have been found on the singlet potential energy surface at 

the RHF/1 and GVB(1P)/1 levels. Partial geometries and imaginary modes for these structures 

are shown in Figure 5. Following the GVB(IP) IRC from transition state 7 (• A') illustrates 

that this species corresponds to the degenerate rearrangement between two open isomers. 

Similarly, transition state 8 (^ A'), the nonplanar bicyclic structure, corresponds to a degenerate 

rearrangement between two cycUc isomers, with the F atom moving from one N atom to 

another. The GVB(IP) barriers for these rearrangements are quite high: 58 and 78 kcal/mol 
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respectively. The C2v structures 9 (^A') andIQ A') (142 and 100 kcal/mol higher, 

respectively, than the open isomer) are found to be transition states between two open isomers 

at the GVB(IP) level of theory. Since all four structures 7.- iO are much higher in energy than 

the transition states for dissociation of both the open and cyclic isomers, such rearrangements 

are extremely unlikely and were not pursued at higher levels of theory. 

4. Singlet-triplet surface of intersection 

The vibrational levels of cyclic NsFC^A) are, technically speaking, resonances since 

they can be predissociated to N2(XlZp+NF(X^Z~) through spin-orbit interactions with the 

3 A" state. The lifetime of the vibrational levels is determined by the relation between the ' A'-

3 A" surface of intersection and the coordinate space on the ^ A' surface sampled by the 

vibrational wavefimction. It is important to distinguish two simations, one in which the state 

lives long enough (for example, microseconds) to be detected and the second in which the state 

lives long enough (for example, days) to be usefiil as an energetic species, with the latter 

situation requiring a more detailed analysis than the former. 

From Table 1 it is seen that the principal difference between the equilibrium structure 

of cyclic N3F and its transition state for decomposition to N2(XlIp+ NF(alA) is attributable 

to changes in R(N1n3) [= R(N2n3)]. For this reason the ^A - 3A" surface of intersection was 

characterized as a function of R(N^N3), which represents an approximate reaction coordinate-

see Figure 2. Three points on the surface of intersection, at the MRCI/5 level, are reported in 

Table 4: (i) the minimum energy crossing point (MECP) a local minimum on the ^ A'- ^A" 

surface of intersection, for which R(N1N3)=1.869A, and two additional points with R(N^N^) 

fixed at (ii) its MRCI/5 transition state value, R(N^N3) = 1.757A, and (iii) an intermediate 

value, R(N1N3)=1.826A. In each case the remaining geometric parameters were optimized to 

minimize the common energy E(3A")(R) = E(^A')(R) s Ex(R). It is seen by comparing 

Tables 2 and 4 that the MECP is lower ui energy than the transition state and, significantly, 

differs from the Uransition state structure principally in the value of R(N ̂ N^). However since 
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R(N is larger at the MECP than at the transtion state, the MECP lies Tjehind' ±e barrier to 

spin-allowed dissociation. Further as RCN^N^) decreases toward its value at the transition 

state, the energy of the intersection point increases rapidly, so that in a qualitative sense the 

crossing surface is either "behind", or well above, the barrier to spin-allowed dissociation. 

Since the ^ A" - ^A" surface of intersection can only be reached by tunneling through the 

barrier on the ^A" surface or at signficant energetic cost, spin-forbidden predissociation will not 

prevent observation of cyclic N3F. The lifetime of the individual vibrational levels with respect 

to spin-forbidden predissociation will be the object of a future publication. 

The behaviour of the ^ A' and ^A"' potential energy surfaces in the vicinity of the 

transition state and MECP (MRCI/5 level) is illustrated from an altemative perspective in 

Figure 6 which reports E('A') and EC^A"") as a function of R(N2- NF) at the MRCI/8 level, 

with the remaining coordinates fixed at their transition state(MRCI/5 level) values. From this 

figure it is seen that AE(3A'", ^A") s EC^A'") - E(^ A") depends very sensitively on R(N2-NF). 

Thus the precise energy of a crossing point is expected to depend on die level of theory used to 

characterize the ^A" and ^A" states. To address this question the ^A' and ^A'" states were 

studied in this region using CCSD(T) wavefunctions. Calculations performed with B ASIS-

6[6-311-H-G(d,p)] and BASIS-7[6-31 l+-hG(2df,2pd)] are reported Table 5 and Figure 6. 

Since the triplet state energies were calculated using unrestricted Hartree-Fock (UHF) wave 

functions as the starting point, it is important to note that the spin contamination for all 

calculations is small, with <S2> < 2.04. At the transition state the ^A' and ^A" state are 

separated by ~39kcal/mol. However at the MECP geometry the separation is reduced to 5.7 

kcal/mol [BASIS-6] and8.5 kcal/mol [BASIS-7]. Still these are fairly large splittings. To 

understand their origin R(N2-NF) was varied from its MRCI/5 value ([R(N2-NF)] = 1.87A) 

in steps of 0.01 A, using BASIS-6. In these calculations remaining geometrical parameters 

were fixed. When R(N2-NF) is increased by only 0.03A, to 1.90A, the singlet-triplet spUtting 

decreases to 0.1 kcal/mol! Note that both the MRCI/8 and CCSD(T)/6 data reported in Figure 
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6 suggest that the MRC3/5 treatment underestimates the energy at the MECP. 

The CCSD(T)/6 calculations in the vicinity of the MECP also indicate (as do the 

MRCI/5 results from Table 1 and the MRCI/8 results in Figure 6) that at the transition state 

RCN^N^) is somewhat shorter than the ~ 1.9 - 1.95A suggested by the MCSCF(6,6) and 

MCSCF(10,10). Since analytic CCSD(T) gradients are not available to us, this last point was 

explored by analyzing the CCSD(T)/6 potential energy surface in the vicinity of the MRCI/5 

transition state. To this end, R(N2-NF) was varied in steps of ±0.05A to ±0.20A, from the 

MRCI/5 transition state, with all other geometric parameters held fixed. Exploratory changes 

in R(N3F) suggest that this is a reasonable procedure. The results are presented in Table 5 and 

Figure 6. It was found by this procedure that the CCSD(T) transition state should have R(N2-

NF) « 1.86A. The locus of the transition state and crossing point at the CCSD(T)/6 level are 

consistent with the previous assertion that the relevant portion of ^ A' - ̂A" surface of 

intersection occurs behind (or above) the barrier to spin-allowed dissociation, see Figure 6. 

Thus the key conclusion of this subsection, that the surface of intersection is 'behind' or above 

the barrier to spin-allowed dissociation, is supported at all levels of treatment. 

The previous discussion has focused on the single coordinate R(N2-NF). It is 

interesting to ask how effective are the remaining degress of freedom in changing AE(^A", 

^ A'). Analysis of the energy difference gradient, -—[A£(^A",'A')], shows that in the 
oRa 

immediate vicinity of the MECP the singlet-triplet separation is most sensitive to R(N2 - NF) 

and secondarily to RCN^N^) [equivalently, it is sensitive to both the coordinates RCN^N^) and 

ZN^N^N^ ]. It is much less sensitive to 9 and R(N2E^. However as R(N'N3) decreases, the 

N2 - NF interaction increases so that 0 and R(N3F) play a more significant role in 

characterizing the surface of intersection.These observations are reflected in the data in Table 4. 

Table 5 reports two pomts near the ^ A' - 3 A" surface of intersection at the CCSD(T)/6 

level, denoted TS+0.15 and MECP+0.03, with similar energies ~11.5kcal/mol and 

~14.5kcal/mol, respectively. The small energetic difference reflects that fact that R(N2-NF) is 
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virtually identical for these two points, being 1.819A and 1.817A respectively. Thus these 

results are consistent with the geometry dependence of Ex(R) in Table 4 and the discussion in 

the preceding paragraph. 

rV. Summary and Conclusions 

The potential energy surfaces for the N3F molecule have been studied using multi-

configurational wave functions. Two new isomers were found: one on the singlet, and one on 

the triplet PES. Both isomers have a 3-membered cyclic structure and Cs symmetry. The 

singlet cyclic isomer is endoergic relative to the open fluorine azide by 15-17 kcal/mol. Its 

kinetic stability is close to the stability of the open isomer: the barrier separating cyclic isomer 

from the dissociation products N2(XlZ^-f-NF (alA) is be ween 11-17 kcal/mol and is lower 

than the barrier to isomerization. The triplet cyclic isomer is much higher in energy (about 70 

kcal/mol), with a barrier to dissociation to N2(X'Zp+NF(X3Z-) on the order of 15 kcal/mol. 

Theuiplet dissociation products, N2(XlZp+NF(X3Z-), are ~37kcal/mol lower in 

energy than the singlet products, N2(X^Zp+NF (alA), consequently crossing of the ^A' and 

the 3 A" surfaces may allow the cyclic singlet isomer to predissociate to the ground state 

products, N2(XlZp+NF(X3Z~). It was found that the singlet-triplet surface of intersection 

Ues 'behind' the barrier to singlet decomposition. Thus spin-forbidden predissociation will not 

preclude detection of cyclic N3F. Additional studies are required to determine whether spin 

forbidden radiationless decay will affect the utility of cyclic N3F as an energetic fuel. 
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Table 1. Geometrical parameters^ 

Method R(NlN2) R(N2N3) R(N3F) ZN1N2N3 6 N1N2N-

Open isomer i A') 

MP2/1 1.154 1.282 1.432 171.6 103.8b 180.0 

MCSCF(6,6)/1 1.127 1.255 1.377 173.2 104.9b 180.0 

MCSCF(10,10)/1 1.134 1.278 1.469 175.1 102.1b 180.0 

Cyclic isomer 2 'A 

MP2/1 1.249 1.501 1.422 65.4 104.7 

MCSCF(6,6)/1 1.198 1.528 1.358 66.9 105.3 

MCSCF(10,10)/1 1.229 1.500 1.440 65.8 104.7 

MRCI/4 1.213 1.471 1.395 65.7 100.3 
MRCI/5 1.181 1.468 1.383 66.3 101.6 

Transition 1 state 3 (^A)'^ 

MCSCF(6,6)/1 1.139 1.904 1.322 72.6 102.5 

MCSCF( 10,10)71 1.149 1.952 1.381 72.9 100.7 

MRCI/4 1.137 1.817 1.383 71.8 100.1 
MRCy5 1.116 1.760 1.379 71.5 100.4 

Cyclic isomer 5 (3 A") 

UMP2/1 1.514 1.328 1.388 55.3 133.2 

MCSCF(6,6)/1 1.458 1.368 1.342 57.8 122.9 

Transition state 6 (3a")'' 

MCSCF(6,6)/1 1.416 1.646 1.340 51.1 126.8b -89.5 

^ Distances in A, angles in degrees. 

bAngle N2n3F 

•^Transition state for decomposition of 2 (^A') to N2+NF(alA) 

'^Transition state for decomposition of 5 (^A") to N2+NF(X3Z-) 
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Table 2. Energetics^ 

2(lA') i(lA') 3(lA') N2+NF(alA) 

Method Etot Erel Erel Erel Erel 

MCSCF(6,6)/lb -262.69893 0.0 -1.1 10.6 -24.5 
S0ICCI(6,6)/1C -262.75520 0.0 11.2 -14.5 
MRCr(6,6)/lc -263.19729 0.0 12.2 -12.0 
CASPT2(6,6)/lc -263.24480 0.0 -16.7 13.2 -12.4 

MCSCF(10,8)71C -262.70992 0.0 6.9 -19.7 
CASPT2(10,8)71C -263.24770 0.0 12.8 -11.6 

MCSCF(10,10)7lb -262.79117 0.0 -2.0 18.0 -11.9 
SOICCI(10,10)7ld -262.90489 0.0 20.1 0.1 
CASPT2(10,10)7ld -263.24997 0.0 -15.4 16.9 -8.4 

MCSCF(14,12)7ld -262.80726 0.0 10.7 -18.7 

MCSCF(10,10)/2d -262.85904 0.0 18.3 -14.1 
CASPT2(10,10)/2d -263.45332 0.0 17.6 -11.0 

MCSCF(10,10)73d -262.86948 0.0 16.7 -14.2 
CASPT2(10,10)73d -263.50753 0.0 13.7 -13.7 

MP2/1 -263.24393 0.0 -16.5 
MP47ie -263.28286 0.0 -16.4 
QaSD(T)/ie -263.27668 0.0 -15.1 

MRCI74b -263.117462 0.0 19.1 
MRCI/5b -263.156100 0.0 11.3 

5 (3A") 6 (3A") N2+NF(X3Z -) 

Method Etot Erel Erel Erel 

MCSCF(6,6)/lb -262.56099 86.6 96.2 -65.7 
CASPT2(6,6)/1C -263.15151 57.3 74.4 ^9.9 

MCSCF(10,10)71c -262.65929 82.8 95.8 -54.8 
CASPT2(10,10)71c -263.15276 61.0 77.3 -45.2 

MP2/lb -263.14024 65.1 
MP4/ie -263.17209 69.5 
QCISD/ie -263.17476 63.9 

^Total energies in hartrees, relative energies in kcal/mol. 

''Structure optimized at indicated level. 

^Based on the MCSCF(6,6)/l geometry. ^Based on the MCSCF( 10,10)71 geometry. 

®Based on the MP271 geometry. 
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Table 3. MCSCF natural orbital occupation numbers^ 

Orbital 10 a' 11 a* 4 a" 5 a" 6 a" 12 a' 

Cyclic 1.914 1.943 1.929 0.086 0.078 0.050 

Transition state 1.927 1.897 1.900 0.073 0.104 0.099 

Point 5 1.934 1.929 1.678 0.066 0.071 0.322 

Point 10 1.935 1.934 1.314 0.065 0.066 0.686 

Point 15 1.935 1.934 1.101 0.065 0.066 0.899 

Point 20 1.935 1.935 1.020 0.065 0.065 0.980 

Point 27 1.935 1.935 0.992 0.065 0.065 1.008 

^The orbitals are shown in Figure 3. 

Table 4. MRCI/5 Analysis of Singlet-Triplet Surface of Intersection^ 

R(N1N2) R(N2N3) R(N3F) 0 Ex 

MECP 1.089 1.869 1.371 73.0 99.3 5.3 

X(N-N^) 1.058 1.826 1.381 73.2 117.7 17.5 

X(N-Nl) 1.060 1.757 1.416 72.4 134.2 37.3 

®Ex in kcal/mol relative to E(lA') = -263.156100a.u. at MRCF5 2 (^A') structure. AE = 

IE(11A')-E(3A")I< Icm-l. 
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Tables. CCSD(T) Analysis of Vicinity of Singlet-Triplet Surface of Intersection^ 

lA' 3a" 

Structure CCSD(T)/6 CCSD(T)/7 CCSD(T)/6 CCSD(T)/7 

Eq 0.0 0.0 103.7 102.9 

TS 10.7 9.9 47.0 48.8 

TS+0.05 11.2 33.7 

TS+O.IO 11.4 22.0 

TS+0.15 11.2 11.8 

MECP 15.0 14.1 20.7 22.6 

MECP+0.01 14.9 18.4 

MECP+0.02 14.7 16.4 

MECP+0.03 14.6 14.4 

^Eq(equilibrium structure), TS and MECP from MRQ/5 treatment. Relative energies in 

kcal/mol. E(Eq) = -263.40458a.u. for CCSD(T)/6 treatment, and -263.53928a.u. for 

CCSD(T)/7 treatment. TS(MECP)+x= TS(MECP) structure with R(N2 - NF) increased by x A 

as discussed in text. 



www.manaraa.com

56 

iN-

4 C, 5 Ce 

Figure 1. Structures of the stationary points on the PES's of singlet and triplet N3F. 
Singlet: 1, 2 - minima, 3 - transition state. 
Triplet: 4, 5 - minima, 6 - transition state. 
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Figvire 2. MCSCF(6,6)/6-31G(d) reaction path for decomposition of singlet cyclic N3F. 
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Figure 3. MCSCF/6-31G(d) natural orbitals for singlet transition state 3 in the plane of the N3 ring. 
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CHAPTER 4. POTENTIAL ENERGY SURFACES FOR DISSOCIATION 

REACTIONS OF fflGH ENERGY ISOMERS OF N2O2 

A paper accepted for publication in Journal of Physical Chemistry 

Galina Chaban, Mark S. Gordon, and Kiet A. Nguyen 

Abstract 

The kinetic stability with respect to dissociation to two NO molecules was studied for 

several high energy isomers of N2O2 using multi-configurational wavefunctions. All of these 

isomers are 50-80 kcal/mol higher in energy than 2 NO. Three N2O2 isomers (a 4-membered 

D2h isomer, a planar Czv isomer, and a bicyclic C2v isomer) are found to be kinetically 

stable: the estimated barriers to dissociation are about 40 kcal/mol for the D2h isomer, and 

about 20 kcal/mol for each of the other two isomers. Reaction paths for their dissociation 

were determined using the intrinsic reaction coordinate method and multi-configurational 

wavefunctions. 

Introduction 

The possible existence of high energy isomers of NO dimer has been of considerable 

experimental and theoretical interest recendy due to their potential role as new high energy 

density materials (HEDM) 1"^. Stimulated emission pumping experiments of Wodtke and co­

workers and studies of photoelectron spectra of N2O2" by Arnold and Neumark^ provide 

indirect evidence for the existence of several high energy N2O2 species. A number of 

metastable N2O2 isomers have also been predicted recently in theoretical papers Relative 

energies of these isomers are in the range of 40-80 kcal/mol above the energy of 2 NO 

fragments. However, in order to be useful as high energy compounds, these species must be 
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kinetically stable; that is, they must be separated from the lower energy isomers and 

dissociation products by relatively high barriers on the potential energy surfaces. 

Besides the adiabatic kinetic stability, the possibility of surface crossings must also 

be considered, to ensure that there is no lower energy path to products due to non-adiabatic 

couplings that can decrease the stability of such compounds^. An example is the high energy 

asymmetric NNOO isomer This structure corresponds to a local minimum on the 'A' 

potential energy surface and is stable to the spin-allowed decomposition a-N202 -> N20(X 

) + O (^D). However, the minimum energy crossing point for the singlet and triplet 

surfaces lies only 2 kcal/mol above the a-NiOi isomer, leading to its predissociation to N2O 

(X ) + O (3p) products 5. Consequently, this isomer is not a viable HEDM candidate. 

In this paper, we present ndnimum energy reaction paths for dissociation of several 

previously predicted'^-^ high energy N2O2 species to 2 NO fragments, including potential 

energy barriers separating them and approximate minimum energy crossing points between 

nearby singlet and triplet states. We predict that some of the high energy isomers may be 

kinetically stable with respect to the N2O2 -> 2 NO dissociation channel. 

Theoretical approach 

The N2O2 potential energy surfaces have been studied using ab initio electronic 

structure methods employing multi-configurational self-consistent-field (MCSCF)^ 

wavefiinctions. MCSCF wavefimctions are necessary for a qualitatively correct description 

of dissociation processes that involve bond breaking. Two kinds of wavefiinctions were used. 

One, denoted MCSCF(10,10), included all possible configurations, consistent with the 

appropriate symmetry and spin, that may be obtained by distributing 10 active electrons in 10 

active orbitals. Generally speaking, five NO and NN bond orbitals, and the five 

corresponding anti-bonding orbitals were included in the active space for various isomers. 

These active orbital choices will be discussed in more detail for each individual isomer. The 
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second active space, MCSCF (14,12), included two oxygen lone pair orbitals (one on each 

oxygen atom) in addition to the (10,10) space. Inclusion of oxygen lone pairs is necessary to 

obtain a consistent description of some reactions. 

The stationary points on the N2O2 potential energy surface have been identified using 

analytic gradients of MCSCF energies. These stationary points were determined to be 

minima, transition states, or higher order saddle points by calculating the hessian (by finite 

differencing analytic gradients), and verifying that there are 0, 1 or >1 negative eigenvalues, 

respectively. Minimum energy paths (MEPs) were determined using the intrinsic reaction 

coordinate (IRC) method with the second order algorithm developed by Gonzalez and 

Schlegel^ and a step size of 0.15 amu^^^ bohr. Stationary point searches and IRC 

calculations were performed using MCSCF(10,10) and MCSCF(14,12) wavefunctions and 

the 6-3 lG(d)lO basis set. These calculations were done using the GAMES S ̂  ^ electronic 

structure program. 

The energies of stationary points, as well as selected points along the MEPs, were 

recalculated with the multi-configurational second order perturbation theory method 

(CASPT2^2 ) to account for dynamic correlation. The CASPT2 wavefianctions were based on 

MCSCF(10,10) (denoted as CASPT2(10,10)) and MCSCF(14,12) (denoted as 

CASPT2(14,12)) reference wavefunctions with 6-31G(d) and 6-311+G(2d)l3 basis sets. 

These calculations were performed using the MOLCAS program. The effect of basis set 

improvement on the relative energies is small, with corrections on the order of 2-4 kcal/mol. 

On the other hand, the addition of dynamic correlation via CASPT2 has a much larger effect, 

with corrections ranging from 8 to 23 kcal/mol. 

Results and discussion 

The four high energy singlet isomers of N2O2 considered in this paper are shown in 

Figure 1, with the structural parameters obtained at the MCSCF(10,10)/6-3 lG(d) level of 
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theory. The structure and energetics of isomers 1-3 have been studied previously ^ at several 

levels of theory including the MCSCF(10,10) and CASPT2(I0,10) levels used in this paper. 

The Hartree-Fock and MP2/6-31+G(d) structures for isomer 4 have been reported by Arnold 

and Neumark 2. All four isomers are relatively high in energy: planar isomers 1,2, and 4 are 

about 50 kcal/mol higher than 2 NO, and the bicyclic isomer 3 is about 80 kcal/mol above the 

energy of 2 NO. Here we consider the kinetic stability for each of these isomers with respect 

to dissociation to two NO molecules. 

1. Dissociation of D2h cyclic isomer 1 

Isomer 1 in Figure 1 has a planar ring structure with four equal N-O bonds (D2h 

symmetry). This isomer was first reported by Chaban, Klimenko and Charkin^^. The 

detailed electronic structure of this isomer is described in reference 4 . The smaller 

MCSCF(10,10) active space used to study this isomer includes four a (N-O) bonds, four 

corresponding a* (N-O) anti-bonding orbitals, and the k (N-N) and 7C*(N-N) orbitals. An 

expanded (14 electron, 12 orbital) active space includes additional electrons and orbitals that 

correspond to the lone pair on each oxygen that interacts with the n space. The 

MCSCF(14,12) natural orbitals and their occupation numbers are shown in Figure 2. Orbital 

labels are given using Cg symmetry notations in order to have the same orbital labels for the 

entire dissociation reaction path. There is significant configurational mixing in this isomer, 

with 0.366 electrons occupying orbitals that are empty at the single configuration level of 

theory. The D2h isomer is 50 kcal/mol higher in energy than 2 NO molecules at the 

CASPT2( 14,12)76-311+G(2d) level of theory. This energy is overestimated at the MCSCF 

level by about 20 kcal/mol. The effect of the active space on the dissociation exothermicity is 

very small. 

The transition state for decomposition of 1 to 2 NO and the associated energetics are 

shown in Figure 3. The transition state geometry is predicted to have Cs symmetry. Both 
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active spaces predict considerable asymmetry in the transition state structure, although there 

are significant differences in the structural details. For example, the longest N-0 distance 

shortens by nearly 0.4 A upon going from the MCSCF(10,10) to the MCSCF(14,12) level. 

MCSCF(14,12)/6-31G(d) natural orbitals for the transition state structxire are shown in Figure 

4. Note that the anti-bonding Cf* orbital corresponding to the partially broken N-O bond (13 

a') has a significant occupation number of 0.695 electrons. Indeed, the set of virtual orbitals 

that would be empty in the Hartree-Fock wavefunction contain slightly more than one 

electron at this MCSCF(14,12) transition state structure. The effect of the expanded active 

space on the MCSCF barrier height is rather small (only 3 kcal/mol), but when dynamic 

correlation is included at the CASPT2 level, the barrier height decreases quite significandy: 

from 52 to 39 kcal/mol. This is probably due to significant changes in the geometry of the 

transition state upon going from the MCSCF(10,10) to the MCSCF(14,12) level. 

Energetics along the dissociation path 1—^2 NO are presented in Figure 5. Although 

the MCSCF(10,10) active space is sufficient for a description of the D2h isomer structure and 

the net energetics of its dissociation to 2 NO, the incorporation of the two oxygen lone pairs 

is essential to obtain a smoothly varying wavefunction along the reaction path that connects 

this isomer with 2 NO. This is shown in Figure 5a, where small black circles correspond to 

the minimum energy path (MEP) for this reaction at the MCSCF(10,10)/6-3 lG(d) level of 

theory, and open circles correspond to single point MCSCF(14,12)/6-3 lG(d) energies at the 

MCSCF(10,10) geometries. The MCSCF(10,10) transition state connects smoothly to the 

D2h isomer, but the part of the IRC connecting the transition state to 2 NO has a discontinuity 

due to a change in the active space orbitals. This discontinuity reflects the incompleteness of 

the (10,10) active space: the active space after the discontinuity contains 6 a' and 4 a" orbitals 

while the original active space has 8 a' and 2 a" orbitals. Inclusion of the two oxygen lone 

pairs with a" symmetry provides a complete active space (8 a' + 4 a") that can be used 

consistentiy along the entire reaction path. Although computation of such a wavefiinction is 
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very time-consuming (it includes 85,212 configurations vs. 9996 configurations for the 

(10,10) space), it is necessary to obtain a correct IRC. 

The resulting MCSCF(14,12) minimum energy path is shown in Figure 5b. The 

barrier height for this reaction is about 40 kcal/mol at the best, CASPT2( 14,12)/6-311+G(2d), 

level used here. Changes in the MCSCF natural orbital occupation numbers along this 

reaction path are shown in Figure 6 for the 12 a', 13 a', 15 a', and 3 a" orbitals. 12 a' and 15 

a', almost doubly occupied and empty respectively at the isomer 1 geometry, become two 

singly occupied k* (N-O) orbitals at the dissociation limit. In addition to this, the almost 

doubly occupied 3 a" orbital becomes empty upon dissociation, while 13 a' changes its 

occupation from 0 to 2. Therefore, this reaction is Woodward-Hoffmann forbidden, and this 

leads to the high reaction barrier. 

Figure 5c illustrates the CASPT2(14,12)/6-31G(d) energies for the lowest singlet 

(^A') and triplet (^A") states at selected geometries along the ground singlet state MEP. The 

repulsive ^A" state crosses the singlet before the transition state (that is, on the reactant side), 

but this crossing is predicted to occur at an energy that is about 32 kcal/mol above the 

reactant well. So, it is likely that singlet-triplet interaction will not destroy the stability of 

isomer 1. 

We conclude that the D2h isomer is kinetically stable with respect to dissociation to 

two NO molecules. Other possible dissociation channels (for example, to N2 + O2) are likely 

to contain even higher potential energy barriers since considerably more electronic and 

geometric rearmgements would be involved; therefore, this isomer should be considered to 

be a possible candidate for isolation and use as a source of energy. 

2. Dissociation ofC2v planar cyclic isomer 2 

MCSCF(10,10) and MCSCF(14,12) structures and energetics for planar cyclic isomer 

2 and the transition state for its decomposition into 2 NO are shown in Figure 7. Isomer 2 is 
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also quite high in energy, about 45 kcal/mol above the two NO fragments at the highest level 

of theory. This isomer has an N=N double bond, two single N-0 bonds, and a single O-O 

bond. The (10,10) active space includes these four CT and one k bond, as well as the 

corresponding anti-bonding orbitals. As in the case of isomer 1, the (14,12) space includes 

two additional filled k orbitals, one from each oxygen atom. The transition state structure is 

not planar; it is twisted by about 15° (due to the broken O-O bond) and has no symmetry 

(although it is very close to C2). The structural parameters obtained using the two MCSCF 

active spaces are quite similar. 

In Ci symmetry, the MCSCF(14,12) wavefiinction includes 169,884 configurations, 

so IRC calculations at this level are extremely expensive. The reaction path in this case was 

followed only at the MCSCF(10,10) level (19,404 configuration wavefiinction). This reaction 

path is shown in Figure 8. Also shown are CASPT2 single point energies for singlet and 

triplet states calculated at several points along the IRC path. The height of the barrier is 

estimated to be about 19 kcal/mol. There is little variation among the various levels of theory. 

The reaction proceeds by breaking the O-O bond first, and then breaking the N-N bond. 

The lowest triplet state is higher in energy than the singlet state for all points along 

the reaction path at the CASPT2(10,10) level of theory (Figure 8). When the single point 

energies are calculated using the larger MCSCF(14,12) active space (along the same 

MCSCF(10,10) reaction path), the CASPT2(14,12) triplet is found to be 4 kcal/mol lower 

than the corresponding singlet, at the transition state geometry. Although the triplet state is 

close to the singlet in energy in the oransition state region, the triplet energy is much higher in 

the reactant channel. Again, it is unlikely that the singlet-triplet crossing will prevent 

detection of isomer 2. More careful calculations in the singlet-triplet crossing region, 

including determination of the non-adiabatic interactions are, of course, desirable. 
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3. Stability of bicyclic isomer 3 

Bicyclic isomer 3 (Figure 1) is one of tlie highest isomers on the N2C)2 potential 

energy surface: its relative energy with respect to 2 NO is about 82 kcal/mol. It has a strained 

structure of two three-membered N-O-N rings with an O-N-N-O dihedral angle equal to 107°. 

The MCSCF active space (10,10) used to describe 3 included the N-N and four N-0 bonding 

orbitals, and the five corresponding anti-bonding orbitals. This isomer, as well as the part of 

the potential energy surface connecting this isomer with the planar ring 1, was smdied in 

detail previously The two isomers were found to be separated by a barrier of 40 kcal/mol. 

Therefore, the stability of the bicyclic isomer with respect to isomerisation to 1 was 

established. 

In an attempt to find a reaction path leading to the dissociation of the isomer 3, we 

found that breaking one of the N-0 bonds leads to a transition state connecting this isomer to 

another planar isomer 4. The dissociation to two NO molecules occurs here in two steps: 

first, 3 isomerizes to 4 through a barrier of about 20 kcal/mol, and then, isomer 4 dissociates 

to 2 NO with a rather small barrier of about 7 kcal/mol. 

The MCSCF(10,10)/6-31G(d) IRC path for the first (isomerisation) part of the 

potential energy surface is shown in Figure 9. The structures of the isomers 3 and 4, and the 

stmcture of the isomerisation transition state, as well as their relative energies, are shown in 

Figure 10. When dynamic correlation (CASPT2) is included, isomer 4 is predicted to be 26 

kcal/mol lower in energy than 3, and the 3 -> 4 barrier height is 19 kcal/mol. The lowest 

triplet state is about 4 kcal/mol lower than singlet at the transition state geometry and is much 

higher in energy for both isomers (see Figure 9). Therefore, the bicyclic isomer 3 is probably 

kinetically stable with respect to rearrangement to isomer 4, although the barrier for this 

channel is lower than for the rearrangement 3 -> 1. Breaking one of the N-0 bonds of 3 

leads to rearrangement to isomer 4, and breaking of the N-N bond leads to 1. Since both 

processes involve substantial barriers, the bicyclic isomer may be a good candidate for a 
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metastable high energy species. Its isolation, however, may be difficult because very high 

energy (at least 100 kcal/mol) has to be provided to 2 NO to overcome the lowest barrier 

leading to this isomer. 

4. Dissociation of Cs planar isomer 4 

MCSCF(10,10) and MCSCF(14,12) structures of the isomer 4 are shown in Figures 

10 and 11, respectively. This isomer has short (almost double) N-N (1.23 A) and N-0 (1.20 

A) bonds, one single N-0 bond (1.4 A), and one very weak N-0 bond (1.7 A). Our MCSCF 

structural parameters are close to those found at the MP2/6-31+G(d) level by Arnold and 

Neumark^ . This isomer is about 48.5 kcal/mol higher in energy than 2 NO at the highest, 

CASPT2(14,12)/6-31-i-G(2d), level of theory (Figure 11). 

The dissociation reaction 4 -> 2 NO was smdied at the MCSCF(14,12)/6-31G(d) level 

of theory. The corresponding reaction path is shown in Figure 12, along with single point 

CASPT2 energies for both the lowest singlet and triplet states obtained at several selected 

points on the MCSCF(14,12) IRC path. The transition state for this process is shown in 

Figure 11. Its structure shows that the first stage of the dissociation process involves transfer 

of the (single bond) oxygen atom from one nitrogen atom to another. This requires only a 

small amount of energy, resulting in a barrier height of about 7 kcal/mol (CASPT2). The 

MCSCF active orbitals at the transition state structure are shown in Figure 13. During the 

second part of this reaction, the N-N bond breaks, with the k (N-N) and rt*(N-N) orbitals (3 

a" and 4 a") rearranging into two singly occupied k* (N-0) orbitals of the dissociation 

products (Figure 14). 

The triplet (^A") state is higher in energy than the singlet in the region of the 

minimum and transition state, and becomes close to the singlet state in the product (2 NO) 

part of the reaction (Figure 12). The small barrier for this reaction suggests that structure 4 

may be stable only at low temperatures. On the other hand, this isomer has the lowest barrier 
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for the reverse reaction, 2 NO isomer 4, and may be responsible for the enhanced 

vibrational relaxation observed by Wodtke and coworkers ̂  for excitation energies above 

vibrational quantum number d = 12. The barrier height is about 56 kcal/mol (2.4 eV), wiiich 

is in the region where vibrational relaxation accelerates ̂  Two NO molecules at large 

separation, with one in its ground vibrational state and the other with the N-O bond stretched 

to 1.55 A (corresponding to o) =15), have an energy that is about 4 kcal/mol above the 2NO 

4 reaction barrier height. This supports the suggestion made in reference 1 that the 

trajectory for collision NO('U = 0) + N0(\) > 12) may pass near the transition state for 

formation of isomer 4 or other high energy isomers. 

Conclusion 

Dissociation and isomerisation reactions were studied for four high energy isomers of 

N2O2 in order to determine their kinetic stability. The isomers included the 4-membered 

ring D2h isomer (1), the planar C2v isomer (2), the bicyclic C2v isomer (3), and the planar Cg 

isomer (4) shown in Figure 1. Minimum energy reaction paths have been determined using 

IRC techniques and MCSCF(10,10) and MCSCF(14,12) wavefunctions. Potential energy 

barriers separating the isomers from 2 NO products and approximate minimum energy 

crossing points between closest singlet and triplet states were determined. The energetics for 

these reactions were calculated using second order perturbation theory based on MCSCF 

wavefiinctions (CASPT2). 

We predict that isomers 1 and 2 may be kinetically stable with respect to dissociation 

to two NO molecules: the predicted barrier heights to dissociation are about 40 kcal/mol for 

the D2h isomer, and about 20 kcal/mol for the planar C2v ring. Low-lying triplet states are 

found to cross the singlet potential energy surfaces along the reaction paths for these two 

isomers, but these crossings occur in regions that are far enough from the positions of the 

minima that they are unlikely to destroy the stability of these isomers. 
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The bicyclic isomer 3 is found to isomerize to isomer 4 via a barrier of about 19 

kcal/mol. In turn, the isomer 4 dissociates to 2 NO via a small barrier of about 7 kcal/mol and 

is probably unstable. 

We suggest that isomers 1,2, and 3 may be good candidates for high energy systems, 

and that experimental attempts should be made to synthesize them. 
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Figure 1. MCSCF(10,10)/6-31G(d) geometric parameters (bond lengths in A, 

angles in degrees) for N2O2 high energy isomers. 
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9 a'(1.972) 13 a' (0.044) 1 a" (1.981) 
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15 a' (0.045) 11 a'(1.949) 3 a" (1.872) 

'•0r'J 

12 a" (1.954) 16 a' (0.042) 4 a" (0.184) 

Figure 2. MCSCF(14,12)/6-31G(d) natural orbitals for isomer 1. a' orbitals are given 
in the x-y plane, a" orbitals are given in the plane shifted by 0.2 A parallel to 
the x-y plane. 
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Figure 3. Structure and energetics for the D2h cyclic isomer (1) and the transition state for 
its decomposition to two NO molecules. 
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Figure 4. MCSCF( 14,12)/6-3 lG(d) natural orbitals for the transition state for dissociation 
of isomer 1. a' orbitals are given in the x-y plane, a" orbitals are given in the 
plane shifted by 0.2 A parallel to the x-y plane. 
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Figure 5. Reaction path for decomposition of D2h isomer (1) to 2 NO: 
a) MCSCF(10,10)/6-3IG(d) IRC path and MCSCF(14,12)/6-31G(d) single point 
energies (open circles); b) MCSCF(14,12)/6-31G(d) reaction path and 
CASPT2(I4,12)/6-31G(d) single point energies; c) CASPT2(14,12)/6-3IG(d) energies 
for singlet (^A') and triplet (3A") states along the dissociation reaction path. 
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isomer 1 

Figure 6. MCSCF(14,12) natural orbital occupation numbers along the dissociation 

isomer 1 —> 2 NO. 
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Figure 7. Structure and energetics for C2v planar isomer (2) and the transition state for its 
decomposition to two NO molecules. 
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Figure 8. MCSCF(10,10)/6-31G(d) reaction path for decomposition of C2v isomer 

to two NO molecules. 
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Figure 9. MCSCF(10,10)/6-31G(d) reaction path for isomerisation 3 -> 4. 



www.manaraa.com

83 

Isomer 3 Transition state Isomer 4 

MCSCF(10,10)/6-31G(d) 
geometries (A, deg) 

C2V 

0 

N N 1.395 

D(ONNO)=107 deg. 

Cl 

V 1.454^ 

o 

115.4 
1.41 c. N-- 1.345 

61.3 

Cs 

147.2 0 

1.689\ /1.409 

O 

Relative energies (kcal/mol) 

MCSCF(10,10)/6-31G(d) 

CASPT2(10,10)/6-31G(d) 

MCSCF(10,10)/6-311 G+(2d) 

CASPT2(10,10)/6-311 G+(2d) 

0.0 

0.0 

0.0 

0.0 

28.7 

19.0 

3 1  . 9  

1 9 . 5  

-5.2 

-24.3 

- 4 . 8  

• 2 6 . 2  

Figure 10. MCSCF(10,10)/6-31G(d) geometries and relative energies for the N2O2 isomers 3 
and 4, and the transition state for 3 -> 4 isomerisation. 
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Figure 11. MCSCF(14,12)/6-3 lG(d) structure and relative energies for the isomer 4 
and the transition state for its dissociation to 2 NO. 
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Figure 12. MCSCF( 14,12)/6-3 lG(d) reaction path for decomposition of isomer 4 

to two NO molecules. 
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Figure 13. MCSCF(14,12)/6-31G(d) natural orbitals for the transition state for 
dissociation of isomer 4. a' orbitals are given in the x-y plane; a" 
orbitals are given in the plane shifted by 0.2 A parallel to the x-y plane. 
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4 ^ 2 NO. 
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CHAPTER 5. THE STRUCTURE AND STABILITY OF M-H2 COMPLEXES 

A paper published in Journal of Physical Chemistry 

Galina Chaban and Mark S. Gordon 

Abstract 

The potential stability of Van der Waals complexes M-H2 (M = Li, Be, B, C, Na, Mg, 

Al, Si) is assessed using quadratic configuration interaction and large basis sets. It is found 

that the alkali metals and alkaline earths form very weak complexes in their ground states, but 

much stronger complexes in their (p) excited states. The elements B, Al, C, Si form both 

linear (Coov) and perpendicular (C2v) complexes, with greater thermodynamic stability in the 

latter arrangements. The complexes formed by C are likely to be kinetically unstable, and the 

same may be the case for Si. On the other hand, the complexes formed by B and Al are 

predicted to be quite stable. 

Introduction 

The structure and energetics of Van der Waals complexes between metal atoms and 

molecular hydrogen are of considerable current theoretical and practical interest. There is, for 

example, currendy considerable interest 1 in doping solid hydrogen with a small amount (<5%) 

of light metal atoms, since many of the lighter metals react more exothemally with oxygen than 

does hydrogen. The key is to determine if these metals can form weakly bound (e.g.. Van der 

Waals) species, so that oxidation does not have to overcome the binding energy of sttonger M-

H bonds (presumably, the amount of metal present would be small enough that M-M bonds 

would not be a consideration). This means that if a Van der Waals species exists, to be useful 

it must be separated from any lower energy hydride by a substantial barrier, and there must not 
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be an intersystem crossing that effectively lowers or even destroys the barrier. 

In addition to the foregoing, it is also of interest from a purely academic perspective to 

understand the nature and the strength of weak metal-hydrogen interactions. Because these 

interactions are so weak, such predictions are challenging and require highly correlated 

wavefunctions with extended basis sets. 

The most interesting metals M, based on the heats of formation of their corresponding 

oxides, appear to be Li, Be, B, C, Na, Mg, Al, Si. Therefore, in this work we have carried 

out a preliminary study of the potential energy surfaces that connect the separated species M + 

H2, potential Van der Waals species, and the much more stable hydrides, in order to determine 

barrier heights on the adiabatic surfaces and to identify state crossings that might lead to 

unwanted nonadiabatic couplings. In addition, the binding energies for the Van der Waals 

complexes are estimated. 

The Li-H2 system has been of particular interest because of the low mass of Li. Both 

the ground and exited states have been studied previously 2-7. Hobza and Schleyer 3 studied 

Li - H2 at the MP2/6-31IG (2d,2p) level of theory and found a weakly bound complex (~ 7 

cm-1 binding energy) for the ground state linear configuration and a much stronger complex 

(16.4 kcal/mol) for the excited state (2B2). Konowalow found the linear Van der Waals 

complex to have a dissociation energy (De) between 13 and 18 cm-1 using the interacting 

correlated fragments (ICF) method and large basis sets 5. Potential energy surfaces of Li-H2 

ground and lowest exited electronic states, including crossing regions, have been studied with 

MCSCF wavefunctions and rather small basis states (4-3IG*) 6-7 . a minimum with De 

about 10 kcal/mol was found on the 2B2 surface, and the transition from 2B2 to 2ai was 

predicted to occur with high probability. Potential energy surfaces have also been smdied for 

Na-H2 8-10, Be-H2 11-13, and Mg-H2 13-15 excited states. Augspurger and Dykstra found 

Van der Waals complexes for Mg-H2 and Mg-HF ground states using the coupled cluster 

method and triple-zeta quality basis sets 16. The B-H2 potential surface has been studied 
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extensively by Alexander 17, who found ±e B—H2 complex to be stable kinetically. On the 

contrary, a practically negligible barrier was found for the C+H2 reaction 18-20. 

In this paper we report preliminary results for M-H2 complexes with M = Li, Be, B, C, 

Na, Mg, Al, and Si in their ground and some excited states, in order to determine the nature of 

their potential energy surfaces. This will provide some insight regarding the thermodynamic 

and kinetic stability of these species. The potential energy surfaces of those compounds found 

to be kinetically stable will be examined later in more detail. 

Method of calculation 

The calculations were carried out using the quadratic configuration interaction method 

QCISD(T) 21. Fourth order perturbation theory (MP4SDQ) ^2 was used for some large 

complexes that contain 4-6 H2 molecules. The basis sets used were correlation consistent 

valence-triple-zeta (cc-pVTZ) 23 for Li, Be, Na, and Mg and augmented aug-cc-pVTZ 24-26 

for the other metal atoms and hydrogen. 

This computational method was tested for Li~H2 and B~H2 complexes, since these 

species have been calculated previously using multi-reference configuration interaction (MRCI) 

methods and large basis sets 5,17. The comparison of our QCISD(T) and MP4SDQ results 

with those of Konowalow for LiH2 ^ and Alexander for BH2 17 are presented in Table 1. 

For the equilibrium geometry of the B~H2 complex, found by Alexander 17 (RB-H2=3. 11 A, 

rH-H=0-742A), the dissociation energy is 128 cm* 1 at the QCISD(T)/ aug-cc-pVTZ level of 

theory as compared with 121 cm-1 obtained with MRCI(D)/aug-cc-pVTZ 17 . Dissociation 

energies for Li~H2 complexes are also in a good agreement with Ref. 5: 15 vs 17 cm-1 for the 

linear complex and 9 vs 11 cm-1 for perpendicular one. (The perpendicular structure, 

however, is found to be a transition state on the potential energy surface of Li-H2 at the 

QCISD(T) level of theory). It is also seen from Table 1, that MP4SDQ consistently reproduces 

QCISD(T) results, while QCISD significantly underestimates binding. 
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The results obtained using different basis sets from pVDZ to pVQZ are shown in Table 1 

for B and A1 complexes. In general, pVDZ is not an adequate basis set for such calculations, 

but pVTZ and pVQZ yield very similar results. We used the pVTZ-type of basis set for the 

rest of our calculations, assuming that it is nearly converged. It was shown previously 27-31 

that the augmented correlation consistent pVTZ basis set is converged with respect to basis set 

superposition errors. 

All of the calculations described here were performed using the Gaussian-92 program 32. 

Since QCISD(T) analytic gradients are not available, the potential energy surfaces for M-H2 

Van der Waals complexes were studied by calculating grids of single-point energies at 

different values of M - H2 and H-H distances. The calculations described in this paper were 

performed at linear (Coov) and perpendicular (C2v) geometries only. The structures found to 

be minima on the potential energy surfaces with resuicted symmetry, were verified to be 

minima or transition states by calculating numerical hessians. The potential energy curves 

shown in all Figures of this paper were obtained as follows: the M-H2 distances were fixed at 

different values and the H-H distances were optimized for each M-H2 distance, that is, R (M-

H2) was used as an approximation to a reaction coordinate. Note, that the points that appear to 

be crossing points on these pictures do not correspond to real crossings, since the two states 

have the same R(M-H2) distance, but different r (H-H) distances, optimal for each state. The 

curves shown should not be considered as reaction paths, since R (M-H2) distance is not 

always a valid approximation to reaction coordinate. 

These curves serve only as an approximate way to show part of the potential surfaces of M -

H2 systems and to give some idea about kinetic stabilities of van der Waals complexes. 

Positions of minimum energy crossing points between different states are discussed in the 

following section. 
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Results and discussion 

The calculated geometries of van der Waals complexes and their dissociation energies are 

shown in Table 2. 

1. Complexes of s-elements 

According to our calculations, s-elements in their ground states (2s, Li, Na and IS , Be, 

Mg) form only linear complexes with H2. The dissociation energies are very small for these 

complexes. They are similar for Li and Na (about 15 cm-1), and for Be and Mg (about 30 

cm-1). The Be and Mg complex energy wells are twice as deep as those for Li and Na and 

have M-H2 distances that are shorter by about 1 A (see Table 2). There are also local minima 

within C2v symmetry, but they are not stable to bending (breaking C2v symmetry). It is 

concluded that the C2v complexes correspond to transition states between linear configurations 

at the level of theory used here. The barrier heights corresponding to these rotations are 6 and 5 

cm- 1 for Li and Na, and 13 and 12 cm-1 for Be and Mg complexes. 

On the other hand, C2v complexes correspond to minima and are very stable (Table 3) 

for excited states of these elements (2p Li,Na and 3p Be,Mg) due to interactions of occupied p-

orbitals with a*(H-H). The dissociation energies for 2B2 complexes of Li and Na are 18 and 

9 kcal/mol; for 3B2 complexes of Be and Mg the dissociation energies are 20 and 6 kcal/mol at 

the QCISD(T) level of theory and basis sets used here. However, as shown in Figures 1 and 2, 

these complexes may be unstable kinetically due to crossings with ground state A] surfaces. 

These crossings suggest that sufficiently strong non-adiabatic coupling between the states 

could result in pre-dissociation of the excited state complexes. 

We have also done calculations on Be (H2)n complexes with n=2-4 and found their 

dissociation energies to change almost additively with the number of H2 molecules: 33, 65,99, 

and 132 cm-1 for n=l, 2, 3, and 4 respectively (see Figure 3). Of course, this additivity is 

Ukely to be related to symmetry. If species having lower symmetry exist, the binding may vary 

somewhat for each additional H2. 
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2. Complexes ofB and Al 

As noted above, the MRCIB-H2 potential energy surface has been studied by Alexander 

17. He found the B~H2 Van der Waals complex to be stable to insertion of B into H2. The 

most stable complex (with De=121 cm-1) was found for a perpendicular orientation of the H2 

molecule, with a p-orbital of B parallel to the H-H bond ( 2B2 state). Less stable complexes 

were found on the 2b 1 (75 cm-1) and 2^ (68 cm- 1) potential energy surfaces. We have 

recomputed these complexes at the QCISD(T)/aug-pVTZ level to compare them with other 

complexes (Table 2). The agreement between QCISD(T) and MRCI is excellent for the 2b2 

and 2b 1 states, but QCISD(T) predicts a De of 93 cm* 1 for the 2l state, 25 cm- 1 larger than 

that predicted by MRCI. 

Three complexes were also found for the AI-H2 system: linear 2i:, and perpendicular 

2B2 and 2b 1. As in the case of the boron complexes, the most stable AI-H2 complex is found 

for the 2B2 state (De=204 cm- 1). 

The C2v parts of the B-H2 and AI-H2 potential energy surfaces are shown in Figures 4 

and 5. The minimum energy crossing between the 2B2 (complex) and 2Ai (ground) states of 

B-H2 and AI-H2, respectively, occurs in a region about 15 and 30 kcal/mol above the 

dissociation products B + H2 and Al + H2 at our level of theory. The geometries of these 

points (not shown in figure)) are follows: B-H2: R (B-H2) = 1.25 A, r (H-H) = 1.30 A: Al-

H2: R (AI-H2) = 1.50 A, r (H-H) = 1.66 A. The actual barriers for these reactions may occur 

in Cs symmetry. Then, they could correspond to avoided crossings and may be lower than the 

C2v crossing points. The AI-H2 potential energy surface, especially in the region of the 

crossing, will be analyzed in greater detail in the future using multiconfigurational 

wavefunctions. However, it is clear that the barrier to insertion of Al into H2 is sufficient for 

the complex to be kinetically stable. The transition state on the 2Ai surface, which separates 

the 2ai complex and the AIH2 compound, is much higher in energy than the position of 2B2 -

2Ai crossing (about 76 kcal/mol above Al + H2), since the complex and the hydride have 
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different electronic configvirations. In the case of BH2 Alexander has found this barrier to be 

about 55 kcal/mol high. For both B and A1 the insertion into the H-H bond is more likely to 

occur through the 2B2 - ^Ai crossing rather than via the very high 2Ai transition state. 

The structures and stabilization energies for several Al-(H2)n complexes with n = 1-4 

are shown in Figure 6. Again, the addition of H2 molecules increases the stability of the 

complex in an almost additive manner. 

3. Complexes ofC and Si 

C (3p) + H2 potential energy surfaces were smdied previously 18-20 at the CI level of 

theory with basis sets varying from minimal 18 to DZ19-20. it was found that within C2v 

symmetry the 3A2 state has a minimum corresponding to a Van der Waals complex, and that 

the 3b 1 state (corresponding to the CH2 ground state) crosses 3A2 about 2.5 kcal/mol above 

the dissociation to C (3p) + H2 . The energy of the crossing point depends very much on the 

basis set: it decreases from 50 kcal/mol for a minimal basis set to 2.5 kcal/mol for the largest 

DZ basis set used in ref.20. It was found by Harding20 that relaxation of C2v symmetry to 

Cs leads to a very slight decrease in energy (about 1 kcal/mol) in the region of die crossing. We 

recalculated the C2v part of the surface using QCISD(T) with the aug-pVTZ basis set and 

estimate that the 3 A2 and 3b 1 minimum energy crossing point (not shown in figure) occurs at 

1.5 kcal/mol above the C (3p) + H2 dissociation energy. The R (C-H2) distance 

corresponding to the crossing point is 1.1 A, and r(H-H) is 1.28 A. At this level of theory, 

the 3A2 surface has a minimum corresponding to a weak Van der Waals complex (with 

De=324 cm- 1, R=2.2A, r=0.75 A). Then, as R(C-H2) decreases, the 3A2 potential curve 

after a very small barrier (10 cm-1) goes down again and has another minimum with R=1.2 

A, r=0.9 A and a dissociation energy about 5.5 kcal/mol (see Figure 7). This region obviously 

has to be studied with multi-configurational wavefunctions, but it does not appear that there is a 

kinetically stable complex in the case of C. 

While the C+H2—> CH2 reaction goes practically without a barrier, the Si (3P) + H2 
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surface seems to be more promising (Figure 8). There is a Si~H2 Van der Waals complex on 

the 3A2 surface which is 2 kcal/mol (720 cm-1) deep, the 3a2 and 3b i states crossing in a 

region that is 20 kcal/mol above the Si-H2 complex. The approximate geometry of the 

minimum energy crossing point is R ( Si-H2 ) = 1.4 A, r (H-H) = 1.67 A. However, the 1 Ai 

state crosses 3A2 at about 5 kcal above the complex (R (Si-H2) = 1.6 A, r (H-H) = 0.94 A 

), so these regions of the Si—H2 potential energy surfaces must be explored in greater detail 

using multi-reference wavefunctions in order to evaluate the non-adiabatic interactions. No 

complex is found on the 1 Ai surface for either C-H2 or Si-H2: the insertion of singlet C and Si 

to H2 goes with no barrier at all. 

We have also considered the Coov approach for both triplet and singlet C and Si. Singlet 

(IZ) and triplet (3n) complexes with occupied p-orbitals along the molecular axis are found for 

linear configurations of C-H2 and Si-H2. Complexes found for lA and states with 

occupied p-orbitals perpendicular to the molecular axis do not correspond to minima (unstable 

to bending). Linear complexes are much weaker than perpendicular ones (see Table 2 for 

dissociation energies and geometries of different complexes). 

Conclusions 

QCISD(T)/cc-pVTZ calculations have been performed for a series of Van der Waals 

complexes M~H2, where M=Li - C and Na - Si. We find that s-elements in their ground states 

form very weak linear complexes with dissociation energies of about 15 cm* 1 (Li, Na) and 30 

cm-1 (Be,Mg). P-elements in their ground states form much stronger complexes due to 

interactions of the occupied p-orbital with the H2 molecule. P-elements form complexes with 

both linear and perpendicular geometries. Perpendicular complexes with the occupied p-orbital 

parallel to the H-H bond, however, are more stable thermodynamically, and their stability 

increases from B, AI to C, Si. The thermodynamic stability of perpendicular complexes 

increases by about a factor of two from first to second row elements, while the stability of 
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linear complexes remains almost the same. The equilibrium distance M-X (X-midpoint of H-H 

bond) of complexes decreases upon going from left to right across the periodic table, and is 

very similar for elements of the same group. 

Kinetic stability was studied for C2v complexes, since thermodynamically stable MH2 

compounds with this symmetry exist for M= B, Al, C, Si. Complexes are kinetically stable 

only if barriers to insertion are high enough. Van der Waals complexes and MH2 compounds 

have different electronic states, and the energy of their crossing is the upper limit for the 

barrier of the reaction, which might occur due to an avoided crossing. B—H2 and AI—H2 

(2B2) complexes are found to be kinetically stable. The minimum energy crossing point 

between 2B2 and 2a 1 is estimated to be about 16 and 30 kcal/mol above the corresponding B 

and Al 2B2 complexes. Complexes of C and Si are probably unstable kinetically (see Figure 7 

and 8), although in the case of Si this depends on how strong is the interaction between triplet 

and singlet states near the crossing region. The regions of these potential surfaces close to 

surface crossings will be smdied more carefully in a later work using multireference wave 

functions. 
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Table 1. Comparison of different methods and basis sets. 

M State R (M-Xl)), A De, cm-1 Method 

Li 22 5.2 13 MP4SDQ/aug-cc-pVTZ 
5.2 13 QCISD/aug-cc-pVTZ 
5.2 15 QaSD(T)/aug-cc-pVTZ 

5.1 17 ICF-CI/CASSCF2) 

B 2b2 3.1 121 MR-a(D)/aug-cc-pVTZ3) 

115 MP4SDQ/aug-cc-pVDZ 
98 QCISD/aug-cc-p\^Z 

119 QCISD(T)/aug-cc-pVDZ 

121 MP4SDQ/aug-cc-p VTZ 
102 QCISD/aug-cc-pVTZ 
128 QCISD(T)/aug-cc-pVTZ 

116 MP4SDQ/cc-pVTZ4) 
100 QaSD/cc-pVTZ 
127 QaSD(T)/cc-pVTZ 

119 MP4SDQ/cc-pVQZ4) 
101 QaSD/cc-pVQZ 
130 QaSD(T)/cc-pVQZ 

A1 2b2 3.22 152 QCISD(T)/aug-cc-pVDZ 
204 QCISD(T)/aug-cc-pVTZ 
210 QCISD(T)/aug-cc-pVQZ 

1) X - midpoint of H-H bond. r(H-H)=0.742A. 

2) Reference 5. 

3) Reference 17. 

4) augmented basis set on H atoms. 
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Table 2. Characteristics of QCISD(T) Van der Waals complexes of M atoms with H2 molecule. 

M State R(M-Xl)), A De 2), cm-1 M State R (M-X), A De,c 

Li 22 5.21 15 Na 22 5.50 13 

2AI3) 5.40 9 2AI3) 5.70 8 

Be 12 4.21 33 Mg 12 4.66 30 

1AI3) 4.35 20 1AI3) 4.80 18 

B22 3.87 93 A1 22 4.62 89 

2B2 3.11 130 2B2 3.25 204 

2BI 3.33 78 2BI 3.60 103 

C 12 3.61 120 Si 12 4.25 112 

3n 3.54 81 3n 4.15 84 

3A2 2.21 4) 324 3A2 2.25 4) 720 

1) X - midpoint of H-H bond. 

2) With respect to dissociation to M (ground state) + H2. 

3) Transition states between two linear minima. 

4) Equilibrium distance r(H-H)=0.75 and 0.76A for C-H2 and Si-H2 3A2 complexes, 

and 0,743 A for other complexes. 
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Table 3. Complexes of Li, Na, Be, and Mg excited states with H2 molecule. 

M State R (M-XD), A R (H-H), A De2) 

U 2B2 1.66 0.84 18.2 kcal/mol 
2BI 1.89 0.75 7.3 kcal/mol 

2S 6.27 0.743 27 cm-1 

Na 2B2 2.14 0.79 9.2 kcal/mol 
2BI 2.36 0.75 3.8 kcal/mol 

2Z 7.27 0.743 19 cm-1 

Be 3B2 1.36 0.98 20.4 kcal/mol 
3BI 1.78 0.76 1.9 kcal/mol 

3Z 4.32 0.743 98 cm-1 

Mg 3B2 2.01 0.80 5.6 kcal/mol 
3BI 2.77 0.743 0.7 kcal/mol 

3Z 5.07 0.743 84 cm- 1 

1) X - midpoint of H-H bond. 

2) With respect to Li, Na (2p) + H2 or Be, Mg(3p) + H2 . 
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Figure 1. C2v potential energy curves for Li-H2 and Na-H2 
systems (QCISD(T) / aug-pvtz). 
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Figure 2. C2v potential energy curves for Be - H2 and Mg - H2 
systems (QCISD(T)/aug-pvtz). 
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Figure 3. Van-der-Waals complexes of Be with H2 molecules ( QCISD(T)/cc-pVTZ ). 
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CHAPTER 6. THE STRUCTURE AND STABILITY OF VAN DER 

WAALS COMPLEXES OF AI WITH H2 

A paper accepted for publication in Chemical Physics Letters 

Galina Chaban and Mark S. Gordon 

Abstract 

Fragments of the C2v, Coov. and Cs potential energy surfaces have been studied for the 

AIH2 molecule. The kinetic stability of the most stable van der Waals complex with ^62 

symmetry has been considered with respect to its rearrangement to the lower lying AIH2 

hydride found on the ^Ai surface. The Al—H2 OBj ) complex is found to be kinetically stable, 

with the lowest energy crossing point between the ^62 and ^Ai states estimated to occur at 

about 30 kcal/mol above the dissociation limit Al + H2. Calculations of the Cs potential energy 

surfaces showed very httle change in electronic configurations of the two lowest ^A' states 

comparing to the ^62 and ^Ai states they result from when symmetry is lowered from C2v to 

Cs. This fact, as well as the high energy location of the crossing point, suggest that the 

probability for ±e adiabatic reaction Al—H2 (^62) AIH2 (^Ai) through an avoided crossing 

is very low. 

Introduction 

Weakly bound complexes between light (second and third period) atoms and molecular 

hydrogen have been of considerable theoretical and practical interest recendy because of their 

possible role in improvement of energetic properties of hydrogen based rocket fuels 

Experimental work is now in progress on deposition of Li, B, and Al atoms into solid 

hydrogen These elements are supposed to form weak complexes widi H2 molecules in a 
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solid matrix and provide additional storage of chemical energy that can be released during 

combustion. 

Recentiy, we have performed calculations on van der Waals complexes between atoms 

Li, Be, B, C, Na, Mg, Al, Si and H2 in order to estimate their thermodynamic and kinetic 

stabilities. We found that the alkali metals and alkaline earths form very weak complexes in 

their ground states (De =15-30 cm"l). The elements B, Al, C, Si form complexes that are 

more stable thermodynamically, with the most stable ones corresponding to a C2v orientation 

of the H2 molecule and a partially occupied p-orbital parallel to the H-H bond: 

However, these elements also form stable MH2 compounds with C2v synmietry, and therefore, 

the kinetic stability of these complexes with respect to the reaction M—H2 —> MH2 becomes 

important and needs to be considered. 

Previous studies of the C - H2 potential energy surface 9-11, as well as our study of C 

and Si complexes ^ showed that the complexes formed by C are kinetically unstable, and the 

same is likely be the case for Si. On the other hand, the complexes formed by B and Al are 

predicted to be kinetically stable 5.6. In view of both energetic and environmental 

considerations, Al seems to be a likely candidate for inclusion in hydrogen fuel and merits 

further investigation. An ab initio smdy of the potential energy surfaces for several electronic 

states of AIH2 within C2v symmetry has been recentiy published by Fang 12. These calculations 

also showed that the insertion reaction of ground state Al atoms into H2 is difficult, but that 

photoexcited Al atoms can react with H2. 

Our previous QCISD(T)/aug-cc-pVTZ calculations of AI-H2 complexes as well as 

sunilar CCSD(T)/aug-cc-pVTZ calculations of Partridge, Bauschlicher and Visscher ^ showed 

that the most stable van der Waals complex corresponds to a ^B2 state and has a dissociation 
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energy De over 200 cm*^. However, inclusion of zero point energies and relativistic corrections 

leads to an estimation of only 38 ± 26 cm'^ for the Do of the AI-H2 complex (reference 7). 

Here, we present a detailed study of the A1 - H2 system, including ground state C2v 

and Cs potential energy surfaces in the region of surface crossing. The main purpose of this 

study is to examine the kinetic stability of the ^62 van der Waals complex with respect to 

formation of AIH2 hydride. 

Method of calculation 

Some of our calculations were performed using the quadratic configuration interaction 

QCISD(T) method 13 and the Gaussian 92 program 14. Several correlation consistent basis sets 

were tested 15 : augmented valence-double-zeta (aug-cc-pVDZ), augmented valence-triple-zeta 

(aug-cc-pVTZ), augmented valence-quadruple-zeta (aug-cc-pVQZ), as well as augmented core-

valence-triple-zeta (aug-cc-pCVTZ and aug-cc-pACVTZ) 16. The latter two were used with 

QCISD(T), including core electrons in the correlation. The results obtained using these basis 

sets for one of the complexes (^62) are shown in Table 1. As can be seen from the table, the 

pVDZ basis set underestimates binding substantially, while pVTZ gives reasonable results 

compared with pVQZ. Core-valence calculations give slightly larger binding energies. The 

remaining points on the AIH2 potential energy surface were done using the aug-cc-pVTZ basis 

set. 

Table 1. Comparison of different computational levels for ^82 complex of AIH2. 

Method De^cm^l 

QCISDCr, fc)/aug-cc-pVDZ 165 

QCISD(T, fc)/aug-cc-pVTZ 205 

QCISDCr, fc)/aug-cc-pVQZ 217 

QCISD(T)/aug-cc-pCVTZ 226 

QCISD(T)/aug-cc-pACVTZ 223 
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^ The dissociation energies are obtained at the QCISD(T, fc)/aug-cc-pVTZ equilibrium 

geometry: Re (AI-H2) = 3.25 A, r (H-H) = 0.745 A. 

More extensive investigations of ±e AI-H2 potential energy surfaces were performed 

using internally contracted multi-reference coniSguration interaction (MRCI) calculations based 

on either single state or state-averaged MCSCF(5,6) wavefiinctions. The MCSCF active space 

consisted of 5 valence electrons distributed among 6 active orbitals. In the dissociation limit 

these correspond to the 4 valence orbitals of A1 and the a and a* orbitals of H2. Potential 

energy surfaces within Civ symmetry were obtained using single-state MCSCF(5,6)/aug-cc-

pVTZ wavefiinctions. Cs potential energy surfaces were examined with state-averaged 

MCSCF and MRCI wavefiinctions, based on a two-state reference wavefimction. The two 

states averaged were the lowest ^A' states reduced firom the ^Ai and ^62 states after lowering 

the symmetry firom C2v to Cg. The MCSCF and MRCI calculations were performed with the 

MOLPRO program 

Results and discussion 

Parts of the C2v and Cooy potential energy surfaces for several lowest electronic states 

are shown in Figures 1 (2B2, 1 and 2Ai) and 2 (2S and ^n). These curves were obtained by 

calculating QCISD(T)/aug-cc-pVTZ single-point energies at different values of the AI-H2 

distance. Local minima corresponding to weak van der Waals complexes were found for die 

2B2,2Bi, and states. Calculations of numerical hessians (energy second derivatives) at 

these points, however, showed that only the 2B2, 2Bi, and 2Z complexes correspond to true 

minima. As was mentioned earlier, the most stable AI-H2 van der Waals complex has C2v 

symmetry and corresponds to the 2B2 state, with the singly occupied p-orbital of A1 parallel to 

the H-H bond. Its dissociation energy (De) is 205 cm-l at the QCISD(T,fc)/aug-cc-pVTZ level, 

and is about 20 cm-l higher when core electrons are correlated (Table 1). The 2B1 and 2Z 

complexes have De = 103 cm-1 and 89 cm-1, respectively, at the QCISD(T,fc) level. Inclusion 
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of zero point energies and spin-orbit corrections may decrease the dissociation energies 

substantially 1. No van der Waals complex is found on the 2Ai potential energy surface. 

However, the ground state of the AIH2 hydride has 2Ai synmietry (RA1-H = 1-6 A, HAIH = 

118°) and is about 13.9 kcal/mol lower in energy than A1 + H2 at the QCISD(T,fc)/aug-cc-

pVTZ level of theory. Formation of AIH2 hydride is not desirable if one wants to store A1 

atoms in a solid hydrogen matrix. Figure lb shows that the lowest energy path that leads from 

the 2B2 complex to the AIH2 hydride passes the 2B2 - ^Ai crossing seam. In order to smdy the 

region of this crossing in more detail, we have calculated grids of MCSCF(5,6) and MRCI 

single-point energies at different values of the A1 - H2 and H-H distances. 

Contour plots of the energy as a fimction of R (AI-H2) and r (H-H) distances for pure 

2Ai and 2B2 states are shown in Figures 3 (MCSCF) and 4 (MRCI). R(A1-H2) is the distance 

between A1 and the midpoint of the H-H bond. The thick solid line on these pictures 

corresponds to the crossing seam between the ^Ai and 2B2 states. The ^Ai state is lower in 

energy for short R (AI-H2) and long r (H-H) distances (upper left portion of the figures) and 

has a minimum corresponding to the AIH2 hydride. The AIH2 molecule has 

R (AI-H2) = 0.82 A and r(H-H) = 2.74 A. This structure is in the region in which the ^Aj state 

is the ground state. The valence electron configuration corresponding to this compound is 

4a^2bl5a\. In addition to the AIH2 minimum, the ^Ai potential energy surface has a stationary 

point correspondmg to a transition state, but this point is located on the higher part of the ^Ai 

surface (where the ground state is 2B2) and is about 80 kcal/mol above the A1 + H2 dissociation 

limit. Its geometrical structure corresponds to R (AI-H2) = 1.8 A and r (H-H) = 1.0 A. 
The 2B2 state is lower for longer R (AI-H2) and shorter r (H-H) distances (lower right 

portion of the figures). There is only a slight minimum on the surface corresponding to a 

weak van der Waals complex. Its electron configuration is 4a,^5af 263 with the singly occupied 

b2 (Py of Al) orbital parallel to the H-H bond. 
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The minimum energy crossing point for the ^Ai and ^62 states is found to be 27 

kcal/mol above the A1 + H2 dissociation limit at the MRCI level of theory (32 kcal/mol at the 

MCSCF level). The geometry of the minimum energy crossing point corresponds to R (AI-H2) 

= 1.51 A and r (H-H) = 1.68 A at the MRCI level of theory, and R (AI-H2) = 1.55 A and r 

(H-H) = 1.76 A at the MCSCF level of theory. 

A steepest descent path was determined starting from the minimum energy crossing point 

at the MCSCF(5,6) level of theory in the direction of the negative of the gradient on both the 

^Ai (downhill in energy to the AJH2 minimum) and ^62 (downhill to the van der Waals A1— 

H2 complex) surfaces. These are illustrated in Figure 3 (lighter curves starting from the 

minimum energy crossing point). A second reaction path was determined, starting from the 

2Ai transition state. This path leads to AIH2 in one direction and to A1 + H2 in the other 

direction. The electron configuration changes during this reaction from Aa^lblSa] in AIH2 to 

4af5af6al in A1 + H2. Since die lowest point on the 2B2 - ^Ai crossing seam is much lower 

than the position of the transition state on the ^Ai surface, it appears that the reaction A1—H2 

(2B2) => AIH2 (2Ai) should occur more efficientiy via the 2B2 - ^Ai crossing. 

The reaction A1—H2 (2B2) => AIH2 (^Aj) could acmally proceed through an avoided 

crossmg that occurs when the symmetry is reduced from C2v to Cs- To consider this 

possibility we have calculated sections of the Cs potential energy surface, using the AIXH 

angle 0 = 85° and 80°, where X is the midpoint of tiie H-H bond. Since we used state-

averaged MCSCF wavefunctions for these calculations, for comparison purposes we have also 

recalculated the 0 = 90° surface using Cs symmetry and state-averaged MCSCF 

wavefunctions. The contour plots for 0 = 90° and 85° are shown in Figures 5 (MCSCF) and 6 

(MRCI). As can be seen, the position of the barrier (or, more correctly, the minimum point on 

the ridge) is higher in energy for the 85° surface, than for 90°. This point is even higher for the 

80° surface. 
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Several points with angle 0 between 90° and 80° were calculated with R(A1-H2) = 

1.51 A and R(H-H) = 1.68 A (values at the MRCI C2v minimum energy crossing point). The 

results of these calculations are shown in Figure 7. The energy of the lower ^A' state decreases 

very slightly (a few cm'^) at 89.5° and then increases, while the upper state energy increases 

continuously as 0 decreases from 90°. The fact that there is ahnost no energy lowering when 

distorting to Cs symmetry suggests that there is very little interaction between these two states. 

The minimum energy crossing point found for C2v symmetry is therefore a good estimate for 

the barrier height for the reaction A1—H2 => AIH2. This is about 30 kcal/mol and is probably 

sufficient for the van der Waals complex to be kinetically stable. In addition, since the two 

lowest 2A' states tend to retaine electronic configurations very close to those of Cjv states (2B2 

and 2Ai), nonadiabatic recrossing is likely to occur and reduce the reaction rate. This should 

enhance the stability of the van der Waals complex. Additional calculations of the energetics 

and derivative couplings in the vicinity of the seam of the AIH2 conical intersection will be 

discussed in a subsequent paper ^8. 

Conclusion 

The thermodynamic and kinetic stability have been studied for weakly bound (van der 

Waals) complexes on the AIH2 potential energy surface because of their possible role as highly 

energetic materials. The most stable Van der Waals complex corresponds to C2v symmetry 

(2B2 state). The kinetic stability of this complex was considered, since the more stable AIH2 

hydride exists with this sjmimetry, but has a different electronic state (^Ai). 

Two possible reaction paths exist for the A1—H2 (complex) AIH2 hydride 

rearrangement. One route is via the ^Ai transition state, but it involves overcoming a barrier of 

about 80 kcal/mol and is considered unlikely. Another way for this reaction to proceed is via an 

avoided crossing in Cs symmetry, with both ^Ai and ^62 states reduced to ^A'. MRCI / 

MCSCF(5,6) calculations in the ^62 - ^Ai crossing region show that the minimum energy 
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crossing point corresponds to a structure with R (A1 - H2) = 1.51 A and r (H-H) = 1.68 A (28 

kcal/mol above the 2B2 complex). The calculations reveal very little interaction between the ^62 

and ^Ai states: the distortion to Cs symmetry results in an energy lowering of the lower 2A' 

state by only a few cm*' at about 89.5 degrees; then the energies of both states go up. This 

suggests that the energy of the crossing point can be considered to be a good approximation to 

the height of the barrier for this reaction. The rather high reaction barrier (28 kcal/mol), as well 

as the high probability of a nonadiabatic recrossing, suggest that the reaction rate should be 

very low. Therefore, the ^62 complex can be considered to be kinetically stable with respect to 

rearrangement to AIH2 hydride. 
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Figure 1. QCISD(T)/aug-cc-pvtz potential energy curves for Cjv states of AI-H2. 



www.manaraa.com

118 

-243.1039 

-243.1040 

-243.1041 

-243.1042 

-243.1043 

-243.1044 
\ • 
\ 

-243.1045 

-243.1046 

-243.1047 
3 4 5 6 7 

R (Al-H), angs. 

Figure 2. QCISD(T)/aug-cc-pvtz potential energy curves for Coov states of AI-H2. 
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Figure 3. MCSCF(5,6)/aug-cc-pvtz potential energy surfaces of A1-H2 system 
in C2v synunetry; 2A1 (a) and 2B2 (b) states. Thick contour lines 
correspond to total energy -243.030 a.u., energy increment is 0.005 a.u. 
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Figure 4. MRCI/MCSCF(5,6)/aug-cc-pvtz potential energy surfaces of A1-H2 system 
in C2v synunetry: 2A1 (a) and 2B2 (b) states. Thick contour lines 
correspond to -243.150 a.u. of total energy, increment=0.005 a.u. 
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Figure 5. SA-MCSCF(5,6)/aug-cc-pvtz potential energy surfaces of A1-H2 system 
in Cs synunetry: angle AIXH = 90 (a) and 85 (b), X-midpoint of H-H bond. 
Thick contour lines correspond to -243.030 a.u., energy increment is 0.005 a.u. 
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Figure 6. MRCI/SA-MCSCF(5,6)/aug-cc-pvtz potential energy surfaces of A1-H2 system 
in Cs symmetry: angle AIXH = 90 (a) and 85 (b), X-midpoint of H-H bond. 
Thick contour lines correspond to -243.150 a.u., energy increment is 0.005 a.u. 
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CHAPTER 7. GENERAL CONCLUSIONS 

In this chapter, the main results presented in this dissertation are summarized, including 

method development and coding (chapter 1) and theoretical investigations of highly energetic 

chemical compounds (chapters 2-6). 

Chapter 1 describes an efficient way to optimize molecular orbitals for different types of 

wavefiinctions including RHF, ROHF, GVB, and MCSCF. Explicit formulae for the exact 

orbital gradient and the approximate diagonal orbital hessian are presented for each kind of 

wavefunction. The method is faster than the standard diagonalization techniques used for RHF 

and GVB. Also, it eliminates the traditional diagonalization step which is not easily 

parallelizable. For MCSCF, the method presented here requires more iterations than an exact 

second order program, but since each iteration is substantially faster, the approach leads to a 

more efficient overall program. In addition, the memory requirements for the approximate 

second order method are substantially less than those for exact second order methods. This 

permits MCSCF calculations for large molecules with basis sets including several hundreds of 

functions. 

With regard to future method development work, the implementation of a state-

averaged fiiU second order MCSCF method is currently in progress. This will allow 

programming of nonadiabatic coupling matrix elements between the averaged electronic states 

in GAMESS in the future. Knowledge of nonadiabatic interactions between electronic states 

will help to improve characterization of highly energetic compounds and their reactions. 

Thermodynamic and kinetic stabilities of high energy isomers for N3F and N2O2 

molecules are investigated in chapters 2 and 3 fi-om the point of view of their possible role as 

sources of energy and candidates for use as fuel systems. Their energies relative to N2 + O2 

and N2 + NF products are very high (on the order of 50-l(X) kcal/mol). Minimum energy 

reaction paths of their isomerisation and decomposition are determined using IRC techniques 
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and MCSCF wavefimctions. In addition, the approximate minimum energy crossing points 

between closest singlet and triplet states are determined. 

New cyclic isomers (with 3-membered nitrogen rings) are discovered on both the 

singlet and triplet potential energy surfaces of N3F. They are less stable energetically than the 

open isomer (fluorine azide) by about 15 and 70 kcal/mol, respectively. The barriers for their 

dissociation to N2+NF(1A) and N2+ NF(3Z) are found to be on the order of 15 kcal/mol. 

Three N2O2 isomers (a 4-membered D2h isomer, a planar C2v isomer, and a bicyclic C2v 

isomer) are predicted to be kinetically stable: the estimated barriers to dissociation are about 40 

kcal/mol for the D2h isomer, and about 20 kcal/mol for each of the other two isomers. Low-

lying triplet states are found to cross the singlet potential energy surfaces along the reaction 

paths for some of the isomers, but these crossings occur in regions that are far enough from the 

positions of the minima that they are unlikely to destroy the stability of these isomers. The 

conclusion is that N2O2 isomers may be good candidates for high energy systems, and that 

experimental attempts should be made to synthesize them. As to the N3F isomers, they will 

probably make good explosives rather than possible fuel materials. 

As a future plan, it would be desirable to use the DRP method to perform classical 

trajectories calculations diat start from vibrationally excited NO molecules. This could provide 

some insights on how N2O2 high energy isomers may be synthesized. Such calculations are 

prohibitively time-consuming at the moment, but may become possible with the progress of 

computer hardware and computational methods. 

The potential stability of Van der Waals complexes M-H2 (M = Li, Be, B, C, Na, Mg, 

Al, Si) is considered in chapters 5 and 6 because of their possible role in improvement of 

energetic properties of hydrogen based rocket fuels. Light elements are supposed to form 

weak complexes with H2 molecules of solid matrix and provide additional storage of chemical 

energy that can be released during combustion. According to our calculations, alkali metals and 

alkaline earths form very weak linear complexes in their ground states (with dissociation 
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energies De about 15 cm"l for Li and Na and 30 cm'^ for Be and Mg), but much stronger 

complexes in their (p) excited states. The elements B, Al, C, Si form both linear (Coov) and 

perpendicular (C2v) complexes. The most stable of these correspond to a perpendicular 

orientation of the H2 molecule, with an occupied p-orbital parallel to the H-H bond. The 

thermodynamic stability of C2v complexes increases from B, Al (121 and 204 cm"'^ 

respectively) to C, Si (De=324 cm'^ and 720 cm"l). Kinetic stability is considered for p 

element complexes since these elements form lower lying MH2 compounds. The complexes 

formed by C are likely to be kinetically unstable, and the same may be the case for Si. On the 

other hand, the complexes formed by B and Al are predicted to be quite stable, with the barriers 

separating them from BH2 and AIH2 estimated at about 15 and 28 kcal/mol, respectively. 

MRCI calculations of Cg potential surfaces for AIH2 showed very little interaction 

between the two lowest ^A' states resulting from the ^52 and ^Ai states that cross at C2v 

symmetry. This fact, as well as the high energy location of the crossing point (~ 28 kcal/mol) 

suggest that die probability of the adiabatic reaction Al—H2 -> AIH2 through an avoided 

crossing is very low. We conclude that among p-elements, Al atom is the best possible 

candidate for inclusion into solid hydrogen for energy storage purpose. The structures and 

stabilization energies for Al-(H2)n clusters are presented with n = 2-6. It is found that the 

addition of H2 molecules increases the stability of the complex in an almost additive manner. 

As the next step, calculations of bigger clusters may be suggested, where two or more 

Al atoms are surrounded by H2 molecules in a way they may be surrounded in the solid H2 

lattice. This can help to study the behavior of metal atoms in a hydrogen matrix, including the 

possibility of their migration and recombination. Classical trajectory calculations based on the 

dynamic reaction path method would be helpful in smdying diffusion of metal atoms in 

hydrogen and predicting whether metal atoms will form dimers and larger clusters when the 

temperature is increased. This can provide useful information for experimentalists working on 

metal-doped solid hydrogen. 
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APPENDIX. DYNAMIC REACTION PATH CALCULATIONS FOR THE 

DISSOCIATION OF N3F CYCLIC ISOMER 

MCSCF(6,6)/6-31G(d) classical trajectory (DRP) calculations are reported here that 

provide additional insights on the process of dissociation of the N3F singlet cyclic isomer to 

N2 + NF singlet products. The reaction path of this dissociation is described in chapter 3. The 

trajectory calculations are initiated from the equilibrium structure of the cyclic isomer. The 

vibrational normal modes for this isomer are shown in Figure 1. An initial kinetic energy 

ranging from 10 to 20 kcal/mol was given in the direction of mode 4, the N2 - NF stretching 

motion. Calculations were performed with step sizes of 0.2 femtoseconds. Since the barrier 

height for dissociation at this level of theory is 10.6 kcal/mol, 10 kcal/mol of initial kinetic 

energy leads only to oscillations. Dissociation also does not occur when 11 and 12 kcal/mol of 

initial kinetic energy is given, at least during the first 700 fs (Figure 2a). This might be due to 

the fact that some of the energy is consumed by other normal modes. 

Changes in kinetic and potential energies with time when 12.0, 13.0, 14.0, 15.0, 15.2, 

and 16.0 kcal/mol of initial kinetic energy (KE) is given in positive direction of normal mode 4 

are shown in Figure 2 a,b,c,d,e,f respectively. The corresponding coordinate changes in terms 

of the normal modes of the equilibrium structure are shown in Figure 3. Only modes with non­

zero contributions (symmetric modes Q2, Q4, Q5, and Q6) are shown. It may be seen from 

these figures that when 13, 14 or 15 kcal/mol of kinetic energy is provided, the molecule 

undergoes several oscillations during the first 200 - 500 fs and then dissociates to N2 + NF 

fragments. When more than 15 kcal/mol initial kinetic energy is provided (15.2 kcal/mol and 

higher), the molecule dissociates almost immediately. In general, the dissociation occurs 

sooner when more initial kinetic energy is given. However, the time required for dissociation 

also depends on how the energy gets distributed among the normal coordinates with time. 

Although initially energy is given only to Q4, part of the energy goes into other modes. 
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especially Q2, the bending motion of NF with respect to the NNN plane. As shown in 

Figure 3, dissociation occurs when Q4 and Q2 come into phase, and a resonance occurs. 

This explains the fact that the dissociation sometimes occurs sooner when less energy is given; 

for example, the molecule dissociates after about 200 fs at 14 kcal/mol kinetic energy and about 

300 fs for 15 kcal/mol. 

The direction in which the kinetic energy is initially provided also has a significant effect 

on the resulting trajectory. This is illustrated in Figures 4 and 5 a,b,c,d where the same 

amounts of initial kinetic energy from 13 to 16 kcal/mol are provided, but in the negative 

direction of normal mode 4 (the negative direction corresponds to bringing N2 and NF closer 

together). This results in much faster dissociation in the case of KE = 14 and 15 kcal/mol 

(after about 50 and 80 fs as compared to about 3(X) and 2(X) fs in Figure 2 c and d), but the 

dissociation occurs later when 16.0 kcal/mol is given (see 4 d vs. 2 f). Dissociation also occurs 

later in the case of 13 kcal/mol initial kinetic energy (4 a). This illustrates that the resulting 

trajectories are very sensitive to initial phases of normal modes, and to mode-mode interactions 

along the trajectory (see Figure 5 for coordinate changes along the trajectories started with 

initial energy given in the negative direction of normal mode 4). 
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(1) 490.9 cm-i (2) 520.8 cm-i (3) 739.0 cm-i 

(4) 774.2 cm-i (5) 1133.2 cm-i (6) 1861.8 cm-

Figure 1. MCSCF(6,6)/6-31G(d) normal modes and frequencies of vibrations for N3F 

singlet cyclic isomer. 
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Figure 2. Kinetic and potential energy changes with time. The intial kinetic energy 

given in positive direction of normal mode 4 is 12.0 (a), 13.0 (b), 14.0 (c), 

15.0 (d), 15.2 (e), and 16.0 (f) kcal/mol. 
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Figure 3. Changes of normal coordinates in terms of normal modes of N3F cyclic 

isomer. Notations a, b, c, d, e, f correspond to those of Figure 2. 
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Figure 4. Kinetic and potential energy changes with time. The initial kinetic energy 

given in negative direction of normal mode 4 is 13.0 (a), 14.0 (b), 15.0 (c), 

and 16.0 (d) kcal/mol. 



www.manaraa.com

133 

a) initial Icinetic energy 13.0 kcal/moi 

i 
m 4.00 

I « 2.00 ^Q2 

0.00 

Q4 
'2.00 

•4.00 

8 0  320 400 480 560 0 160 240 

Tim*. f« 

b) initial kinetic energy 14.0 kcal/mol 

« 4.00 

Q 2 06 
0 4 2.00 

0.00 

04 
-2.00 

05 

•4.00 

ISO 200 0 0 100 
ruTM, fs 

c) initial kinetic energy 15.0 kcal/mol 

, 

4.00 0 J 
/ /02 

2.00 - / 
06 

0.00 

•2.00 

\ Q 5  

•4.00 

' 1 r 1 1 t 1 1 1 1 J 1 i i r 

0 20 40 60 80 100 120 140 160 

Tim«. fs 

d) initial kinetic energy 16.0 kcal/mol 

1 
n 

I Q2 
e* 

06 

0.00 

Q 4 

OS 

•5.00 

0 4 0 6 0 8 0 2 0 100 120 160 140 

RIRN*. (I 

Figure 5. Changes of normal coordinates in terms of normal modes of N3F cyclic isomer. 

The initial icinetic energy is given in negative direction of normal mode 4. 

Notations a, b, c, d correspond to those of Figure 4. 
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